Greybus Specification
1.0

Google Project Ara

June 04, 2019

Greybus Specification 1.0 1
1 Glossary 3
2 Contributors 7
3 Legal Stuff 9
3.1 Copyright e 9
3.2 Licenseo e 9
3.3 Additional IP Rights Grant (Patents) 9
4 Introduction (Informative) 11
5 Greybus Hardware Model 13
5.1 OVerviewo 13
5.2 Interface States 14
5.3 Imitial Interface States 22
5.4 Interfaces 22
5.5 Imterface Lifecycle States L 22
5.6 Bundle Power States 28
5.7 Special AP Module Requirements 29
6 Interface Information 31
6.1 Manifest e 31
6.2 Greybus Interface Attributes 36
7 Greybus Operations 39
7.1 Message Data Requirements e 40
7.2 Operation Messages o o e e e e e e 40
7.3 Greybus Operation Status 41
8 Connection Protocols 43
8.1 Protocol Versions 43
8.2 Common Greybus Protocol Version Operation 44
8.3 Common Greybus Protocol CPort Shutdown Operation 45
8.4 Connection Transmission Restrictions 45
9 Special Protocols 47
9.1 Control Protocol 47
9.2 SVC Protocol 64
9.3 Bootrom Protocol e 110
10 Device Class Connection Protocols 117
10.1 Audio Protocol e 117
10.2 Camera Protocol e e 138
10.3 Component Authentication Protocol 168

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 ii

10.4 Firmware Download Protocolo 173
10.5 Firmware Management Protocolo Lo oo 177
10.6 HID Protocol e 185
10.7 Lights Protocol 190
10.8 Log Protocol e 200
10.9 Loopback Protocol e 201
10.10 Power Supply Protocol 204
10.11 Raw Protocol e 212
10.12 Vibrator Protocol 213
11 Bridged PHY Connection Protocols 215
11.1 USB Protocol e 215
11.2 GPIO Protocol o e 215
11.3 SPI Protocol 223
11.4 UART Protocol e e 227
11.5 PWM Protocol o e 234
11.6 I2C Protocol e 238
11.7 SDIO Protocol e 241
12 Module and Interface Lifecycles 251
12.1 The Module Lifecycle o 251
12.2 The Interface Lifecycle 252
Appendices
A Firmware Lifecycle on ARA Phone Module (Informative) 275
A.1 Firmware Types and Protocols 275
A2 ARA Boot Stages L e 275
A3 Imterface Manifest Layout L 276
A.4 TIdentify Current Interface Firmware Stage 277
A.5 Prepare an Interface Firmware to enter MODE_SWITCHING Lifecycle State 277
A.6 Update S2L and S3F in bridge ASIC’s SPI Flash 278
A7 Update Device Processor Firmware Images, 278
Bibliography 281

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 1

Warning: This document contains a preliminary specification for various aspects of a Greybus system’s
communication. It is important to note that the information contained within is in a draft stage, and
has not yet been fully implemented. The specifications defined herein are unstable, and may change
incompatibly in future versions of this document.

This document abides by Section 13.1 of the IEEE Standards Style Manual, which describes the use of the
words “shall”; “should”, “may”, and “can” in a document as follows.

The word shall is used to indicate mandatory requirements strictly to be followed in order to conform
to the Specification and from which no deviation is permitted (shall equals is required to).

The use of the word must is deprecated and shall not be used when stating mandatory requirements;
must is used only to describe unavoidable situations

The use of the word will is deprecated and shall not be used when stating mandatory requirements;
will is only used in statements of fact

The word should is used to indicate that among several possibilities one is recommended as particularly
suitable, without mentioning or excluding others; or that a certain course of action is preferred but
not necessarily required; or that (in the negative form) a certain course of action is deprecated but not
prohibited (should equals is recommended that).

The word may is used to indicate a course of action permissible within the limits of the Specification
(may equals is permitted to).

The word can is used for statements of possibility and capability, whether material, physical, or casual
(can equals is able to).

Unless explicitly designated informative, all sections are normative.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 3

Chapter 1

Glossary

AP, AP Module, Application Processor Module A specially designated Module within a Greybus
System.

An AP Module administers a Greybus System by exchanging SVC Protocol Operations with the SVC,
and Control Protocol Operations with Modules connected to Interfaces on the Frame.

Bridged PHY Protocol One of the designated set of Protocols which allow Modules to expose function-
ality to the Greybus System which is provided by chipsets using alternative physical interfaces than
UniPro, or which do not comply with an existing Device Class Protocol.

Connection, Greybus Connection A Greybus Connection, or simply Connection, is a bidirectional
communication path between exactly two Interfaces.

There is a UniPro CPort at each end of a Connection; each such CPort is part of a Module or is
associated with the SVC. Modules may exchange data on a Connection through transmission and
reception of UniPro Messages.

The AP may establish Connections to Interfaces during The Interface Lifecycle. When a Connection
is established, Greybus Operations may be exchanged between the two users of the CPorts at either
end of the Connection. The semantics for these Operations are defined by Protocols in the Greybus
Specification.

The AP may also subsequently close Connections. When a Connection is closed, Greybus Operations
can no longer be exchanged between the CPort Users.

The AP also exchanges data on a Connection with the SVC.
Connection Protocol See Protocol.
Control Connection A Connection which is used to exchange Operations in the Control Protocol.

Control CPort A UniPro CPort provided by an Interface which, under certain conditions, responds to
Greybus Operations in the Control Protocol.

CSI-2 Camera Serial Interface 2. See CSI 2 Specifications.
CSI-3 Camera Serial Interface 3. See CSI & Specifications.

Device Class Protocol One of the designated set of Protocol which allow Modules to expose function-
ality commonly found on mobile handsets to the Greybus System, in a manner that abstracts various
hardware-specific aspects by which that functionality is implemented.

Frame A physical entity within a Greybus System, containing a UniPro switch, exactly one SVC, and a
collection of Interfaces. Each Interface may be occupied by a Module. A Module may occupy multiple

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 4

Interfaces. Every Module exchanges UniPro Messages with other elements of a Greybus System by
physical connection to one or more Interfaces.

FrameTime A global monotonic clock shared by all processors in the system. FrameTime is based off
of a common reference clock and is synchronized using Greybus Operations and a series of TimeSync
Pulses. FrameTime provides a global 64 bit timestamp at a clock rate specified by the AP.

Greybus System An implementation of the Project Ara platform which complies with the Greybus Spec-
ification.

Interface An entity with a Greybus Module which can interact with a Frame via its physical connection
to an Interface Block if the Module is attached to the Frame.

Interface Backend Firmware The Interface Backend Firmware may be required for a Module for the
functioning of an entity other than the Interface.

Interface Block The physical connectors exposed by the Frame for connection to Modules as defined by
the Project Ara MDK.

Interface Firmware The Interface Firmware may be required for a Module for the functioning of an
Interface, which is responsible for exchanging Greybus Operations.

Interface Lifecycle A state machine which defines the changes occurring on each Interface Block's Inter-
face State from the time a Module is attached to the Interface Block until it is removed.

Interface State An abstract representation of the state of each Interface Block in a Greybus System.

MDK, Module Developers’ Kit Project Ara Module Developer’s Kit. This comprises various docu-
ments which collectively define the Ara platform.

Message Header The Message Header is a common data structure which occurs at offset zero of each
UniPro Message containing an individual Greybus Operation‘s Request or Response. Within the Mes-
sage, the Message Header is followed by an optional payload, as defined by the Operation‘s Protocol.

Module A physical entity within a Greybus System, which is inserted into exactly one Slot in a Frame.
Modules exchange information with one another and with the SVC' via UniPro Messages as defined by
[MIPI01] and in accordance with the Greybus Specification.

Operation An abstraction defined as part of a Protocol. An Operation comprises an Operation Type, an
Operation Request (or simply “Request”), and an Operation Response (or simply “Response”).

Requests and Responses are UniPro Messages as defined in [MIPI01]; the UniPro L4 payload and
semantics of each Request and Response are defined by the Greybus Specification.

Operation Type Each Protocol defines a set of Operation Types. Each Operation Type has a name, a
Request Value, and a Response Value.

An Operation Type has a name, along with a one-byte nonzero value, from which the Operation Type’s
Request Value and Response Value are derived.

Each Operation Type has an associated unsigned value, which lies in the range 1 to 127 (the value 0
is invalid). Each Operation Type has a Request Value, which equals the Operation Type’s value, and
a Response Value, which equals the Operation Type’s value logically ORed with 0x80.

For example, an Operation Type with value 0x03 has Request Value 0x03, and Response Value 0x83.

Primary Interface When a Module is attached to one or more Interface Blocks in a Slot, exactly one
such Interface Block is the Primary Interface to the Module.

This Interface Block shall have an Interface ID which is the lowest in value of all of the Interface Blocks
attached to the Module.

An attached Module can only be ejected from a Greybus System via its Primary Interface. The means
of ejection are implementation-defined.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 5

Protocol A Greybus Protocol defines the layout and semantics of the Operations which may be exchanged
on a Connection.

Protocols are grouped according to their function:
e Special Protocols
e Device Class Protocols
e Bridged PHY Protocols
Request A UniPro Message sent by a Module which initiates an Operation.

The UniPro 14 payload and semantics of each Request are specified by the Protocol definition of the
Request’s associated Operation.

Requestor Within the context of an Operation, the Module which sends or sent the Operation‘s Request.
Respondent Within the context of an Operation, the Module which sends or sent the Operation’s Response.
Response A UniPro Message which is an Operation.

The UniPro L4 payload and semantics of each Response are specified by the Protocol definition of the
Response’s associated Operation.

Secondary Interface When a Module is attached to one or more Interface Blocks Slot,only one such
Interface Block is the Primary Interface to the Module. All other such Interface Blocks are Secondary
Interfaces to the Module.

These Interface Blocks, if any, have Interface IDs which are consecutive integers following the Interface
ID of the Primary Interface to the Module.

Modules may communicate via Greybus via Secondary Interfaces, but the Module as a whole is generally
identified by the Interface ID of its Primary Interface. Additionally, the Module can only be physically
ejected from the Greybus System via its Primary Interface, through implementation-defined means.

Slot The Interfaces in a Frame are physically partitioned into groups of one or more Interfaces. Each such
group is called a Slot.

While each Interface in a Slot may be physically connected to at most one Module at any given time,
a Slot with multiple Interfaces may be connected to multiple Modules. Additionally, a Module may be
connected to multiple Interfaces, depending upon its size.

Special Protocol One of the designated set of Greybus Protocols which permits discovery and enumer-
ation of Modules by the SVC, and for other special-purpose tasks, such as network and power bus
management.

SVC, Supervisory Controller An entity within the Frame that configures and controls the UniPro
network, and controls other elements of each Interface.

Switch An entity within the Frame that allows UniPro implementations on Modules to communicate with
one another via UniPro CPorts.

The Switch is managed directly by the SVC. Through the use of the SVC Protocol, the AP may
request the SVC to configure the Switch in order to manage its internal state, as well as to establish
Greybus Connections between Interfaces.

TimeSync Pulse An assertion and deassertion of the WAKE pin associated with an Interface Block for
the purposes of communicating the FrameTime to an Interface Block. The duration of the assertion is
implementation-defined but must be shorter than both the WAKE Pulse and the WAKFE Pulse Cold
Boot Threshold respectively.

WAKE Pulse An assertion and deassertion of the WAKFE sub-state of an Interface State.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 6

WAKE Pulse Cold Boot Threshold An implementation-defined duration in time. If a WAKE Pulse
occurs on an Interface State and exceeds this duration, then any Module which is attached to the cor-
responding Interface Block which is capable of Greybus communications shall initialize or re-initialize
itself.

Additional details are described in WAKE.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

Chapter 2

Contributors

The following individuals made significant contributions to the development of this specification:
e Mark Greer — Animal Creek Technologies
e Alexandre Bailon — BayLibre
e Benoit Cousson — BayLibre
e Bartosz Golaszewski — BayLibre
e Axel Haslam — BayLibre
e Fabien Parent — BayLibre
e Patrick Titiano — BayLibre
e Jun Li — BSquare
e Phong Tran — BSquare
e Winnie Wang — BSquare
e Chris Myerchin — BSquare
e Jason Hung — BSquare
o Jeffrey Carlyle — Google
e Paul Eremenko — Google
e David Fishman — Google
e Greg Kielian — Google
e David Lin — Google
e Elwin Ong — Google
e Sandeep Patil — Google
e Robert C Johnson — GTG Productions
e Johan Hovold — Hovold Consulting
e Laurent Pinchart — Ideas On Board
e Marti Bolivar — LeafLabs
e Perry Hung — LeafLabs

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

e Michael Mogenson — LeafLabs

e Eli Sennesh — LeaflLabs

e Joel Porquet — LeafLabs

e Vishal Bhoj — Linaro

e Bin Chen — Linaro

e Alex Elder — Linaro

e Thara Gopinath — Linaro

e George Grey — Linaro

e Rob Herring — Linaro

e Vaibhav Hiremath — Linaro

e Viresh Kumar — Linaro

e Khasim Mohammed — Linaro

e Jacopo Mondi — Linaro

e Sachin Pandhare — Linaro

e Satish Patel — Linaro

e Matt Porter — Linaro

e Rui Silva — Linaro

e John Stultz — Linaro

e Glen Valante — Linaro

e Pankaj Bharadiya — Linaro

e Vaibhav Agarwal — Linaro

e Greg Kroah-Hartman — Linux Solutions
e Blagovest Kolenichev — MM Solutions
e Georgi Dobrev — MM Solutions

e Jean Pihet — NewOldBits

e Bryan O’Donoghue — Nexus Software
e Ara Knaian — NK Labs, LLC

e Seth Newburg — NK Labs, LLC

e Karim Yaghmour — Opersys

e Olin Sibert — Oxford Systems

e Tony Carosa — Protocol Insight

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 9

Chapter 3

Legal Stuft

Don’t Panic.

— Douglas Adams

Copyright

Copyright 2015-2016 Google Inc. All rights reserved.

License

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative
Commons, PO Box 1866, Mountain View, CA 94042, USA.

Additional IP Rights Grant (Patents)

“This specification” means the software components of the Greybus specification distributed by Google.

Google hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, transfer
and otherwise run, modify, implement and propagate the contents of this specification, where such license
applies only to those patent claims, both currently owned or controlled by Google and acquired in the
future, licensable by Google that are necessarily infringed by this specification. This grant does not include
claims that would be infringed only as a consequence of further modification of this specification or a related
implementation.

If you or your agent or exclusive licensee institute or order or agree to the institution of patent litigation
against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that this specification
or any code incorporated within this specification constitutes direct or contributory patent infringement,
or inducement of patent infringement, then any patent rights granted to you under this License for this
specification shall terminate as of the date such litigation is filed.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

http://creativecommons.org/licenses/by-sa/4.0/

Greybus Specification 1.0

10

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 11

Chapter 4

Introduction (Informative)

Good artists copy, great artists steal.

— Pablo Picasso

The Greybus Specification describes a suite of communications protocols required to support the Project
Ara modular cell phone platform.

The Project Ara Module Developer’s Kit (MDK) is the official Project Ara platform definition; it comprises
various documents which collectively define the Ara platform, including its industrial, mechanical, electrical,
and software design and requirements. Refer to the main MDK document for an introduction to the platform
and its components. Familiarity with this document is assumed throughout the Greybus Specification; its
definitions are incorporated here by reference.

The Greybus Specification is included within the MDXK; its purpose is to define software interfaces whose
data and control flow cross Module boundaries. This is required to ensure software compatibility and
interoperability between Modules and the Frame.

Project Ara utilizes the UniPro protocol for inter-Module communication. The UniPro specification is defined
by the MIPI Alliance. UniPro‘s design follows a layered architecture, and specifies how communication shall
occur up to the Application layer in the OSI model. Project Ara’s architecture requires an application layer
specification which can handle dynamic device insertion and removal from the system at any time and at
variable locations. It also requires that existing Modules interoperate with Modules introduced at later
dates. This document aims to define a suite of application layer protocols which meet these needs.

In addition to UniPro, Project Ara also specifies a small number of other interfaces between Modules and
the Frame. These include a power bus, signals which enable hotplug and power management functions, and
interface pins for Modules which emit and receive radio signals. The Greybus Specification also defines the
behavior of the system’s software with respect to these interfaces.

A Project Ara “Module” is a device that slides into a physical slot on a Project Ara Frame. The Frame has
one or more “Interface Blocks.” Each Interface Block is a single physical port through which UniPro packets
are transferred. Modules connect one or more Interface Blocks on the Frame. Greybus represents each
Interface Block with an “Interface” abstraction. A Greybus Interface can support one or more “Bundles”.
A Bundle represents a logical “device” in Greybus that does one logical “thing” as far as the host operating
system works. Bundles communicate with each other on the network via one or more UniPro CPorts. A
CPort is a bidirectional pipe through which UniPro traffic is exchanged. Bundles send “messages” via CPorts;
messages are datagrams with ancillary metadata. All CPort traffic is peer-to-peer; multicast communication
is not supported.

Project Ara presently requires that exactly one application processor (AP) is present on the system for
storing user data and executing applications. The Module that contains the AP is the AP Module; the

Copyright (©) 2014-2016 Google Inc. All rights reserved.

http://www.ecma-international.org/activities/Communications/TG11/s020269e.pdf

Greybus Specification 1.0 12

Greybus specification defines a Control Protocol to allow the AP Module to accomplish its tasks.

In order to ensure interoperability between the wide array of application processors and hardware peripherals
commonly available on mobile handsets, the Greybus Specification defines a suite of Device Class Connection
Protocols, which allow for communication between the various Modules on the system, regardless of the
particulars of the chipsets involved.

The main functional chipsets on Modules may communicate via a native UniPro interface or via “bridges,”
special-purpose ASICs which intermediate between these chipsets and the UniPro network. In order to
provide a transition path for chipsets without native UniPro interfaces, the Greybus Specification defines
a variety of Bridged PHY Connection Protocols, which allow Module developers to expose these existing
protocols to the network. In addition to providing an “on-ramp” to the platform, this also allows the
implementation of Modules which require communication that does not comply with a device class Protocol.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 13

Chapter 5

Greybus Hardware Model

Overview

An implementation of the Project Ara platform which complies with the Greybus Specification is a Greybus
System.

A Greybus System has the following physical components:

e A Frame, which contains at least one Slot. The Slots on a Frame are separated by the Frame’s spine
and ribs.

e A collection of Slots on the Frame, each of which contains at least one Interface Block. Each Inter-
face Block contains several pins, which allow for power distribution, Module hotplug detection, time
synchronization and communication between the Frame and attached Modules.

e Zero or more attached Modules, which mate with the Frame via one or more Interface Blocks. All
Interface Blocks used by an individual Module are in the same Slot on the Frame. An Interface Block
on the Frame can be used by at most one Module at a time.

The Frame contains the SVC, which, in collaboration with the AP Module, manages physical signals present
on the Interface Blocks. The Frame also contains a Switch, which can be directly configured by the SVC.

Each Interface Block contains connections for M-PHY [MIPI02] LINK establishment between attached
Modules and the Switch. The SVC can configure the Switch and permit communication between the Switch
and attached Modules, and thereby indirectly between Modules themselves, via these LINKs. The AP is
also able—as a Module-to communicate with other Modules, as well as the SVC, using these LINKs.

The following sections define abstract representations of state present in a Greybus System for use repre-
senting these components within the Greybus Specification.

e The first section, Interface States, defines the Interface State data structure. This structure represents
the state of components related to an Interface Block on the Frame.

The dynamics of a Greybus System effect changes to Interface States as defined in the remainder of
this document. These changes map to Interface Block components in implementation-defined ways.

e The subsequent section, Initial Interface States, defines the initial values of each Interface State.

e Interfaces then defines the Interface, which models the entities within attached Modules that commu-
nicate with the Frame via Greybus.

e Following that, Interface Lifecycle States provides a state diagram which describes Interface lifetimes
within a Greybus System. The states in this diagram are Interface Lifecycle States.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 14

e Finally, Special AP Module Requirements defines special requirements related to the AP Module and
the SVC.

Each Interface Block in a Greybus System is given a unique identifier, its Interface ID. Interface IDs increase
consecutively, moving counter-clockwise around the Frame. The Interface State and the Interface Block it
is associated with share the same Interface ID.

Subsequent definitions within the Greybus Specification define how certain Greybus Operations affect Inter-
face States and Interface Lifecycle States in a Greybus System.

Interface States

An Interface State is a tuple containing “sub-state” values. Each Interface State is defined by the specific
values of its sub-states. Each Interface Block in a Greybus System has an associated Interface State, which
represents its state within the Frame. The initial value of each Interface State is given in Initial Interface
States. An Interface Block’s Interface State is well-defined at the time a Greybus Operation’s request message
is transmitted or response message is received. A Greybus Operation can lead to a change to one or more
sub-state values, and consequently change the Interface State associated with an Interface Block.

The names of the sub-states of each Interface State are as follows, along with an overview of their meaning
within a Greybus System.

e DETECT: whether the SVC has sensed that a Module is attached to the Interface Block.

e V_SYS: whether system power is supplied from the Frame to the Interface Block.

e V_CHG: whether the Interface Block can supply power to the Frame.

o WAKE: whether the Frame is “activating” the Interface Block for communication via Greybus.

e UNIPRO: a representation of the state of the Switch components connected to the Interface Block.
e REFCLK: whether the Frame is providing a reference clock signal to the Interface Block.

e RELEASE: whether the Frame is attempting to physically eject a Module attached to the Interface
Block.

o INTF_TYPE: denotes capabilities the SVC has determined related to the Interface communicating
with the Interface Block.

e ORDER: If the SVC has determined the Interface Block is attached to a Module, this indicates whether
the SVC has determined the Interface Block is the “Primary Interface” or a “Secondary Interface” to
the Module.

e MAILBOX: the value of a special-purpose and Greybus implementation-specific UniPro DME attribute
within the Switch used by Modules as a non-CPort based means of communication with the Frame.

An Interface State is written as a tuple as follows:

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 15

Value Description

DETECT_UNKNOWN Whether a Module is attached to the Interface Block is unknown
DETECT_INACTIVE No Module is currently attached to the Interface Block
DETECT_ACTIVE A Module is attached to the Interface Block

Table 5.2: DETECT sub-state values

Sub-State Value
DETECT <detect>

V_SYS <V._sys>
V_CHG <v_chg>
WAKE <wake>
UNIPRO <unipro>
REFCLK <refclk>

RELEASE <release>
INTF_.TYPE <type>
ORDER <ord>
MAILBOX <mbox>

Table 5.1: Interface State Tuple

Where in each case <detect>, <v_sys>, etc. are the values of the corresponding sub-states.

For brevity, the phrase “an Interface State’s DETECT” is used to denote the value of the DETECT sub-state
of that Interface State, and similarly for the other sub-states.

DETECT

The values of the DETECT sub-state are given in Table 5.2.

The DETECT sub-state of an Interface State represents the state of signals used to determine whether the
Interface Block currently has a Module attached to it. This determination shall be performed by the SVC.
The means by which the SVC does so are implementation-defined.

Under normal operation, a Module shall be physically removed from a Greybus System as a consequence
of Operations exchanged between the AP and SVC only. However, it is possible that a Module can be
physically removed from the system without intervention from the AP and SVC. This condition is a forcible
removal of the Module; alternatively, the Module is said to have been forcibly removed.

If a Module attached to an Interface Block is forcibly removed, there may be an implementation-defined de-
lay during which the DETECT sub-state of the corresponding Interface State remains DETECT_ACTIVE.
Furthermore, the DETECT sub-state may become DETECT_UNKNOWN following a forcible removal.
However, the SVC shall, potentially following such a delay and period during which DETECT is DE-
TECT_UNKNOWN, determine that the DETECT sub-state is DETECT_INACTIVE.

V_SYS

The values of the V_SYS sub-state are given in Table 5.3.
The value of the V_SYS sub-state is set by the SVC.

The V_SYS sub-state of an Interface State represents the state of system power as supplied by the Frame to
the corresponding Interface Block via the Interface Block’s connection to the system power bus.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 16

Value Description

V_SYS_.ON The Frame supplies system power to the Interface Block
V_SYS_OFF The Frame does not supply system power to the Interface Block

Table 5.3: V_SYS sub-state values

Value Description

V_CHG_.ON The Interface Block may supply power to the Frame
V_CHG_OFF The Interface Block cannot supply power to the Frame

Table 5.4: V_CHG sub-state values

Modules may draw power from Interface Blocks, depending on the V_SYS sub-state of the corresponding
Interface State. A Module can only draw power from an Interface Block whose Interface State’s V_SYS
sub-state is V_.SYS_ON.

Note that the V_SYS sub-state only indicates whether the Frame is supplying system power to the corre-
sponding Interface Block; it does not imply that a Module is attached to the Interface Block.

The SVC shall set the V_SYS sub-state of any Interface States associated with a forcibly removed Module
to V_.SYS_OFF after an implementation-defined delay.

V_CHG

The values of the V_CHG sub-state are given in Table 5.4.
The value of the V_.CHG sub-state is set by the SVC.

The V_CHG sub-state of an Interface State represents whether power may be supplied to the Frame via that
Interface Block, via the Interface Block’s charger power bus.

The Frame may draw power from an Interface Block, depending on the V_CHG sub-state of the corresponding
Interface State. The Frame can only draw power from an Interface Block whose Interface State’s V_.CHG
sub-state is V_.CHG_ON.

Note that the V_.CHG sub-state only indicates whether the Frame may draw power from the corresponding
Interface Block; it does not imply that a Module is attached to the Interface Block.

The SVC shall set the V_.CHG sub-state of any Interface States associated with a forcibly removed Module
to V_.CHG_OFF after an implementation-defined delay.

WAKE

The values of the WAKE sub-state are given in Table 5.5.

Value Description

WAKE_UNSET Walke signal is neither asserted nor deasserted
WAKE_ASSERTED Wake signal is asserted to an Interface Block
WAKE_DEASSERTED Wake signal is deasserted to an Interface Block

Table 5.5: WAKE sub-state values

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 17

The WAKE sub-state of an Interface State represents the state of a signal used to initialize an attached
Module. The value of the WAKE sub-state is set by the SVC.

During the initialization of a Greybus System, all Interface States have WAKE equal to WAKE_UNSET.
The SVC shall only set WAKE to a value other than WAKE_UNSET for an Interface State whose DETECT
sub-state is DETECT_ACTIVE and V_SYS is V.SYS_ON.

Note that the WAKE sub-state only indicates whether the wake signal is asserted, deasserted, or neither to
corresponding Interface Block; it does mot imply that a Module is attached to the Interface Block.

The SVC shall set the WAKE sub-state of any Interface States associated with a forcibly removed Module
to WAKE_UNSET after an implementation-defined delay.

WAKE Pulse
Subject to the above restrictions, the SVC may assert and deassert the WAKE sub-state by following this
sequence, assuming WAKE is WAKE_UNSET.

1. Set WAKE to WAKE_ASSERTED

2. Delay for some duration

3. Set WAKE to WAKE_DEASSERTED

4. Set WAKE to WAKE_UNSET

This is called a WAKE Pulse. When the duration of the WAKE Pulse equals or exceeds an implementation-
defined threshold, the WAKE Pulse Cold Boot Threshold, this is a signal to any attached Interface to initiate
(or reinitiate) UniPro, and subsequently Greybus, communication, as described in later sections.

TimeSync Pulse

In addition to the restrictions described in the Wake section; once an Interface is in the ENUMFERATED
Lifecycle State and upon successful completion of the Greybus SVC TimeSync Wake Pins Acquire Operation
the interpretation of the WAKE signal is re-defined as a TimeSync signal until successful completion of the
Greybus SVC TimeSync Wake Pins Release Operation.

During the period between successful completion of a TimeSync Wake Pins Acquire Operation and comple-
tion of a Greybus SVC TimeSync Wake Pins Release Operation the SVC may toggle WAKE_ASSERTED
and WAKE_DEASSERTED to an Interface Block to indicate a Greybus SVC TimeSync Pulse event. The
SVC is required to ensure the duration of the WAKE_ASSERTED signal is sufficiently short that it cannot
be misinterpreted as any type of WAKE Pulse.

Assuming WAKE is WAKE_UNSET:
1. Set WAKE to WAKE_ASSERTED
. Delay for some duration less than the duration of a WAKE Pulse
. Set WAKE to WAKE_DEASSERTED
. Set WAKE to WAKE_UNSET

=~ W N

This is called a TimeSync Pulse. The duration of the TimeSync Pulse is implementation-defined but must
be less than the implementation-defined WAKE Pulse Cold Boot Threshold.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 18

Value Description

UNIPRO_OFF UniPro port is powered off

UNIPRO_DOWN UniPro port is powered on, and the link is down

UNIPRO_LSS UniPro link startup sequence is ongoing between Module and Frame
UNIPRO_UP UniPro link is established

UNIPRO_HIBERNATE UniPro link is in low-power hibernate state

UNIPRO_RELINK UniPro peer is attempting to re-initiate linkup

Table 5.6: UNIPRO sub-state values

UNIPRO

The values of the UNIPRO sub-state are given in Table 5.6.

The UNIPRO sub-state of each Interface State represents entities within the Switch. These entities can
communicate with Interfaces within Modules, and can be configured by the SVC.

Since all Greybus Protocols exchange data via UniPro Messages, each Interface Block contains the necessary
signals to connect a UniPro implementation within a Module attached to that Interface Block to the Switch,
which can route these Messages to other Modules, and perform some other UniPro protocol communication
with attached Modules.

Transitions between successive values of the UNIPRO sub-state are shown in the following figure. All other

transitions are illegal.
* 5 UPRO_HIBERNATE

Any value other
than UPRO_OFF
UPRO_RELINK

Greybus communication between Modules (including the AP Module) is only possible through Interface
Blocks whose Interface State’s UNIPRO sub-state is UNIPRO_UP: this is required to allow CPorts managed
by Module Interfaces to exchange Greybus Operations via UniPro Messages. It is also necessary for routes
within the Switch to be established to allow UniPro Messages sent by Interfaces to be relayed through the
Switch to the Interfaces which are their intended recipients.

UPRO UP

UPRO_OFF UPRO_DOWN -@

Other UNIPRO sub-state values are used primarily during communication between the SVC and AP during
Module initialization, teardown, power management, and error handling, and are subject to the following
constraints:

e Before a Module is first attached to an Interface Block, and during the initialization of a Greybus
System, UNIPRO is either UNTPRO_OFF or UNIPRO_DOWN.

e If a Module is not attached to an Interface Block, UNIPRO cannot become UNIPRO_UP,
UNIPRO_HIBERNATE, or UNIPRO_RELINK.

e The SVC can set UNIPRO to either UNIPRO_OFF (and subsequently to UNIPRO_DOWN) at any
time, regardless of whether a Module is attached to the Interface Block.

e Both the SVC and any attached Module’s Interface shall be notified, by implementation-specific
means, if UNIPRO becomes any of the values UNIPRO_LSS, UNIPRO_UP, UNIPRO_HIBERNATE,
or UNIPRO_RELINK.

e If UNIPRO is UNIPRO_DOWN, either the SVC or an attached Module’s Interface may set UNIPRO
to UNIPRO_LSS.

o If the SVC sets UNIPRO to UNIPRO_LSS, the attached Module’s Interface may subsequently set
UNIPRO to UNIPRO_UP, within a duration defined by the UniPro standard.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 19

Value Description

REFCLK_ON The Frame is supplying a reference clock signal to the Interface Block
REFCLK_OFF The Frame is not supplying a reference clock signal to the Interface Block

Table 5.7: REFCLK sub-state values

e If an attached Module’s Interface sets UNIPRO to UNIPRO_LSS, the SVC may subsequently set
UNIPRO to UNIPRO_UP, within the same duration.

e If UNIPRO remains UNIPRO_LSS for a duration defined by the UniPro standard, it autonomously
(i.e., without the SVC or Module making the change) is set to UNIPRO_DOWN.

When this occurs, if the SVC set UNIPRO to UNIPRO_LSS, the SVC shall be notified by
implementation-specific means; similarly, if the Interface sets UNIPRO to UNIPRO_LSS, the Inter-
face shall be notified by implementation-specific means.

e The SVC can set UNIPRO to UNIPRO_HIBERNATE.
o If UNIPRO is UNIPRO_HIBERNATE, the SVC can attempt to set UNIPRO to UNIPRO_UP.

The SVC shall be notified whether the attempt succeeds or fails. If a Module is attached to the
Interface Block, the Interface on the Module may be notified if the attempt succeeds or fails. In both
cases, the notification is through implementation-specific means.

e An attached Module can, but should not, set UNIPRO to UNIPRO_HIBERNATE or
UNIPRO_RELINK.

e The SVC can, but should not, set UNIPRO to UNIPRO_RELINK.

Note that the UNIPRO sub-state is a Frame-centric view of the state of entities within the Switch. Following
a forcible removal of a Module which had established a LINK to the Frame via the corresponding Interface
Block, the UNIPRO sub-state may retain its previous value or change values. This may depend upon its
current value and any ongoing activity on the LINK.

REFCLK

The values of the REFCLK sub-state are given in Table 5.7.
The value of the REFCLK sub-state is set by the SVC.

The Frame may transmit a reference clock signal of an implementation-defined frequency to any attached
Modules through the Interface Blocks the Modules are attached to. The REFCLK sub-state indicates
whether this transmission is currently ongoing.

Note that the REFCLK sub-state only indicates whether the Frame is supplying a reference clock signal to
the corresponding Interface Block; it does not imply that a Module is attached to the Interface Block.

The SVC shall set the REFCLK sub-state of any Interface States associated with a forcibly removed Module
to REFCLK_OFF after an implementation-defined delay.

RELEASE

The values of the RELEASE sub-state are given in Table 5.8.
The value of the RELEASE sub-state is set by the SVC.

The Frame may physically eject any attached Modules through implementation-defined means. Any attached
Module has exactly one Primary Interface, and may contain Secondary Interfaces, as described in ORDER.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 20

Value Description

RELEASE_ASSERTED Frame is asserting ejection signal to the Interface Block
RELEASE DEASSERTED Frame is not asserting ejection signal to the Interface Block

Table 5.8: RELEASE sub-state values

INTF_TYPE Value Description

IFT_.UNKNOWN 0 Module not attached, type is undetermined, or error occurred
IFT_DUMMY 1 Module attached does not support UniPro communication
IFT_UNIPRO 2 Module attached supports UniPro, but not Greybus Protocols
IFT_GREYBUS 3 Module attached supports Greybus Protocols

Table 5.9: INTF_TYPE sub-state values

The SVC may set the RELEASE sub-state of an Interface Block which is the Primary Interface to an
attached Module to RELEASE_ASSERTED for an implementation-defined duration, then set RELEASE to
RELEASE_DEASSERTED, in order to attempt to eject the attached Module from the Frame. This is called
a “RELEASE pulse”.

The consequences of setting an Interface State’s RELEASE sub-state for a Secondary Interface to a Module,
or when the Interface State’s DETECT state is not DETECT_ACTIVE, are not defined by the Greybus
Specification.

Note that the RELEASE sub-state only indicates whether the Frame is supplying ejection signaling to the
corresponding Interface Block; it does mot imply that a Module is attached to the Interface Block.

The SVC shall set the RELEASE sub-state of any Interface States associated with a forcibly removed Module
to RELEASE_DEASSERTED after an implementation-defined delay.

INTF_TYPE

The values of the INTF_TYPE sub-state are given in Table 5.9.

The value of the INTF_TYPE sub-state is set by the SVC. Because the INTF_TYPE sub-state is communi-
cated to the AP via Greybus Operations, its symbolic names are also given numeric values as shown in the
table.

From the Module perspective, the physical connections made to Interface Blocks may not always support
Greybus communications. Additionally, Greybus Systems are intended to concurrently support non-Greybus
UniPro-based application protocols, such as UFS [JEDEC-UFS].

The INTF_TYPE sub-state encodes this distinction for each Interface State.

When it is unknown whether a Module is attached to an Interface Block (DETECT sub-state is DE-
TECT_UNKNOWN), or it is known that no Module is attached to an Interface Block (DETECT is DE-
TECT_INACTIVE), the INTF_TYPE sub-state is IFT_.UNKNOWN.

Subsequent sections describe how the AP and SVC coordinate during the Module detection and boot process
to allow the SVC to set the INTF_TYPE sub-state, and how the AP is informed of its value.

ORDER

The values of the ORDER sub-state are given in Table 5.10.
The value of the ORDER sub-state is set by the SVC.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 21

Value Description
ORDER_UNKNOWN No Module is attached, or Primary vs. Secondary status unknown
ORDER_PRIMARY Interface is the Primary Interface to an attached Module

ORDER_SECONDARY Interface is a Secondary Interface to an attached Module

Table 5.10: ORDER sub-state values

MAILBOX sub-state Value Description

MAILBOX_NULL (none) UNIPRO is UNIPRO_OFF; DME attribute access is not possible
MAILBOX_NONE (Reserved) 0x0 Initial DME attribute value; reserved for internal use
MAILBOX_AP 0x1 AP Interface is ready for SVC' Protocol Connection
MAILBOX_GREYBUS 0x2 Module is ready for Control Protocol Connection

(Reserved) 0x3..0xFFFFFFFF Reserved for future use

Table 5.11: MAILBOX sub-state values

A Module may attach to one or more Interface Blocks on a Slot in the Frame. Exactly one of these Interface
Blocks is the “Primary Interface” to the Module; signaling on this Interface Block may be used to physically
eject the Module from the Frame. All other Interface Blocks attached to the Module, if any, are “Secondary
Interfaces”: they may communicate via Greybus to the AP and the SVC, but the Frame cannot eject the
Module through these Interface Blocks.

Whether an Interface Block is the Primary or a Secondary Interface to a Module is mirrored in the Interface
State abstraction using the ORDER sub-state. The correspondence between the physical and abstract states
is given in Table 5.10.

After a Module is attached to a Greybus System, the SVC determines which of the Interface Blocks it is
attached to is the Primary Interface, and which are Secondary Interfaces, through implementation-defined
means.

Note that the ORDER, sub-state only indicates the most recent value set by the SVC, if any. It does not
imply that a Module is attached to the Interface Block.

The SVC shall set the ORDER sub-state of any Interface States associated with a forcibly removed Module
to ORDER_UNKNOWN after an implementation-defined delay.

MAILBOX

The MAILBOX sub-state is either the value MAILBOX_NULL or a 32-bit unsigned integer.

The MAILBOX sub-state represents the value of an implementation-defined DME attribute, named the
“mailbox”, which is present on each port in the UniPro switch inside the Frame.

The mailbox attribute ID is 0xA000, and its selector index is ignored.

When an Interface State’s UNIPRO sub-state is UNIPRO_OFF, its MAILBOX sub-state is MAIL-
BOX_NULL. Otherwise, it is a positive integer.

When an Interface State’s UNIPRO sub-state is UNIPRO_UP, a Module may write to this DME attribute
using a UniPro peer write. In a Greybus System, the SVC shall detect such a write and subsequently read
the value of the mailbox attribute.

The values that a Module may write to the mailbox attribute are given in Table 5.11.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 22

Initial Interface States

During the initialization of a Greybus System, the initial value of each Interface State is:

Sub-State Value

DETECT DETECT_UNKNOWN
V_SYS V_SYS_.OFF

V_CHG V_CHG_OFF

WAKE WAKE_UNSET
UNIPRO UNIPRO_OFF

REFCLK REFCLK_OFF

RELEASE RELEASE DEASSERTED
INTF_.TYPE IFT_UNKNOWN

ORDER ORDER_UNKNOWN
MAILBOX MAILBOX_NULL

Table 5.12: Initial Interface States

As a consequence of the reset sequence of a Greybus System, the SVC determines a value of DETECT for
each Interface State in the system. This is explained in more detail in later sections, and forms the basis of
the state machine described in Interface Lifecycle States.

Interfaces

As stated above, a Module attached to the Frame may contain one or more entities called Interfaces, each of
which is able to detect and respond to signals at a unique Interface Block to which the Module is attached.
That is, each Interface communicates with the Frame via exactly one Interface Block, and no two Interfaces
communicate with the Frame via the same Interface Block.

A Module shall contain exactly one Interface for each of the Interface Blocks to which it is attached. For
brevity, it is written that an Interface “is connected to the Frame” via this Interface Block.

Interfaces within Modules shall communicate with the Frame as specified in this document, but Interfaces
may vary in their capabilities. For example, an Interface may not be able to communicate via UniPro.
Certain Interface communication capabilities can be discovered by the AP and SVC, which can record the
information discovered in the INTF_TYPEFE sub-state of the Interface State associated with that Interface.

Interface Lifecycle States

This section briefly introduces the Interface Lifecycle state machine, shown in the following figure. A detailed
description of this state machine is provided in The Interface Lifecycle.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 23

early power_down reboot early eject
power_down

Any State

orcible_removal

DETACHED

Each of the states is a Lifecycle State. Lifecycle States denote the current status of an Interface, and
transitions between Lifecycle States manage the dynamic behavior of the Interface as it interacts with the
Frame. For example, in the ATTACHED Lifecycle State, the SVC has determined a Module is attached to
an Interface Block, and thus an Interface can communicate with the Frame via that Interface Block. No
other action has been taken by the Greybus System to communicate with the Interface, and it is unknown
whether the Interface supports UniPro commmunication.

The DETACHED Lifecycle State is a special case. In this state, the SVC has determined an Interface Block
has no Module attached. In this case, no Interface is connected to the Frame.

This section defines a group of Interface States which are the legal Interface States within the Frame when
an Interface is in each Interface Lifecycle State.

For example, when an Interface is in the ACTIVATED Lifecycle State, the Interface State within the Frame
has an INTF_TYPE other than IFT_UNKNOWN. Multiple permitted values for the sub-states of the Inter-
face States within each Interface Lifecycle State are shown between angle brackets (<>).

The square node labeled “Any State” denotes that the transition is allowed from any Interface status what-
soever, and models the consequences of a forcible removal.

The Interface Lifecycle States are introduced, and their associated Interface States are defined, in the fol-
lowing sections.

Subsequent chapters define Greybus Protocols, of which the Control Protocol and SVC' Protocol are especially
significant in terms of their impact on an Interface’s Lifecycle State. Following those chapters, a detailed
description of the actions taken by the AP, SVC, and each Interface is given describing how transitions
between Lifecycle States are managed.

ATTACHED

In the ATTACHED Lifecycle State, the SVC has:
e determined that a Module is attached to the Interface Block, setting DETECT to DETECT_ACTIVE

e determined whether this is the Primary Interface or a Secondary Interface to the Module, setting
ORDER.

No actions have been taken to boot the Module, communicate with it via UniPro, etc. That is, in the
ATTACHED Lifecycle State, the Interface State is otherwise identical to its initial state.

In the ATTACHED Lifecycle State, the following Interface States are allowed as described in later sections:

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 24

INTF_TYPE UNIPRO MAILBOX
IFT_.DUMMY UNIPRO.DOWN MAILBOX_NONE
IFT_UNIPRO UNIPRO_UP MAILBOX_NONE
IFT_GREYBUS UNIPRO.UP MAILBOX_GREYBUS

Table 5.14: INTF_TYPE relationship to UNIPRO and MAILBOX in ACTIVATED

Sub-State Value
DETECT DETECT_ACTIVE

V_SYS V_SYS_OFF
V_CHG V_CHG_OFF
WAKE WAKE_UNSET
UNIPRO UPRO_OFF

REFCLK REFCLK_OFF

RELEASE RELEASE_DEASSERTED

INTF_.TYPE IFT_UNKNOWN

ORDER ORDER_PRIMARY or ORDER_SECONDARY
MAILBOX MAILBOX_NULL

Table 5.13: ATTACHED Lifecyle State

ACTIVATED

In the ACTIVATED Lifecycle State, system power and clock have been applied to the Interface Block, and
an attempt to establish a UniPro link between Frame and Module has been made.

As a consequence, it is known whether the Module supports UniPro, so UNIPRO is either UNIPRO_DOWN
or UNIPRO_UP. If UNIPRO is UNIPRO_UP, then the Module may signal readiness for communication
via Greybus Protocols by setting MAILBOX. Thus, MAILBOX either remains its initial value, MAIL-
BOX_NONE, or is set by the Module to MAILBOX_GREYBUS.

The SVC also sets INTF_TYPE when the Interface is ACTIVATED, based on a combination of the UNIPRO
and MAILBOX sub-states. The correspondence between UNIPRO, MAILBOX, and INTF_TYPE is given
in Table 5.14.

In the ACTIVATED Lifecycle State, the following Interface States are allowed as described in later sections:

Sub-State Value

DETECT DETECT_ACTIVE

V_SYS V_SYS_.ON

V_CHG V_CHG_OFF

WAKE WAKE_UNSET

UNIPRO UPRO_DOWN or UPRO_UP

REFCLK REFCLK_ON

RELEASE RELEASE DEASSERTED

INTF_.-TYPE IFT_DUMMY, IFT_UNIPRO, or IFT_.GREYBUS
ORDER ORDER_PRIMARY or ORDER_SECONDARY
MAILBOX MAILBOX_NONE or MAILBOX_GREYBUS

Table 5.15: ACTIVATED Lifecyle State

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 25

ENUMERATED

The ENUMERATED Lifecycle State can only be reached when an Interface signals readiness for Greybus
Protocol communication during the transition to ACTIVATED. Thus, INTF_TYPE is IFT_GREYBUS, and
MAILBOX is MAILBOX_GREYBUS.

When an Interface is ENUMERATED, a Greybus Control Protocol Connection has been established to that
Interface, and its Manifest has been read by the AP and successfully parsed.

For brevity, the phrases “an Interface is being enumerated” and “the AP is enumerating an Interface” shall
mean that one of the following conditions holds:

e The Interface was ACTIVATED, its INTF_TYPE is IFT_GREYBUS, and the procedure in Enumerate
(ACTIVATED — ENUMERATED) is subsequently being followed in the “enumerate” transition from
ACTIVATED to ENUMERATED in the Interface Lifecycle state machine,

e The Interface was MODESWITCHING, and the procedure in Mode Switch FExit
(MODE_SWITCHING — ENUMERATED) is subsequently being followed in the “ms_exit”
transition from MODE_SWITCHING to ENUMERATED, or

e The Interface was SUSPENDED, and the procedure in Resume (SUSPENDED — ENUMERATED)
is subsequently being followed in the “resume” transition from SUSPENDED to ENUMERATED.

The procedure is referred to as enumeration in any of the above cases. Re-enumeration may be used instead
when an Interface is being enumerated a second or subsequent time.

While an Interface is ENUMERATED, the AP may determine through application- or Protocol-specific
means that the Frame’s reference clock is not required for the Interface to function correctly. Thus, REFCLK
may be set to REFCLK_OFF.

Similarly, when the Interface is ENUMERATED, the AP may determine through application- or Protocol-
specific means that the Interface can supply power to the Frame via the Interface Block. Thus, V.CHG may
be set to V_.CHG_ON.

In the ENUMERATED Lifecycle State, the following Interface States are allowed as described in later
sections:

Sub-State Value

DETECT DETECT_ACTIVE

V_SYS V_SYS_.ON

V_CHG V_CHG_OFF or V.CHG_ON
WAKE WAKE_UNSET

UNIPRO UPRO_UP

REFCLK REFCLK_ON or REFCLK_OFF

RELEASE RELEASE DEASSERTED

INTF_.TYPE IFT_GREYBUS

ORDER ORDER_PRIMARY or ORDER_SECONDARY
MAILBOX MAILBOX_GREYBUS

Table 5.16: ENUMERATED Lifecyle State

MODE_SWITCHING

The MODE_SWITCHING Lifecycle State is a special case which is used to allow for re-enumeration of an
Interface without physically removing it from, and attaching it to, a Greybus System.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 26

As part of entering the MODE_SWITCHING Lifecycle State, all Greybus Connections involving the Interface
are closed. The Interface may then perform internal re-initialization, and subsequently signal to the Frame
when this is complete by setting MAILBOX. The Frame can then attempt to re-enumerate the Interface,
including retrieving its (possibly different) Manifest again.

Before an Interface enters the MODE_SWITCHING Lifecycle State, REFCLK shall be set to REFCLK_ON
if it is REFCLK_OFF, and V_CHG shall be set to V.CHG_OFF if it is V.CHG_ON.

An Interface may enter and exit the MODE_SWITCHING Lifecycle State an arbitrary number of times.

In the MODE_SWITCHING Lifecycle State, the following Interface States are allowed as described in later
sections:

Sub-State Value

DETECT DETECT_ACTIVE
V_SYS V_SYS_.ON

V_CHG V_CHG_OFF
WAKE WAKE_UNSET
UNIPRO UPRO_UP

REFCLK REFCLK_ON

RELEASE RELEASE DEASSERTED

INTF_. TYPE IFT_GREYBUS

ORDER ORDER_PRIMARY or ORDER_SECONDARY
MAILBOX MAILBOX_GREYBUS

Table 5.17: MODE_SWITCHING Lifecyle State

TIME_SYNCING

The TIME_SYNCING Lifecycle State represents the Interface state as the frame-time is being synchronized
to an Interface from the SVC. For the duration of the TIME_SYNCING state it is not valid to generate a
WAKE Pulse to an Interface.

A Greybus Operation TimeSync Wake Pins Acquire Operation is responsible for transitioning an Interface
into the TIME_SYNCING state.

Once an Interface has entered the TIME_SYNCING state it will wait for the SVC to generate a known
number of TimeSync Pulses. The Interface will have been informed of how many TimeSync Pulses to
expect emanating from the SVC and shall mark the local time of the incoming TimeSync Pulse on the
rising-edge of the TimeSync Pulse.

The Greybus SVC TimeSync Wake Pins Release Operation is responsible for transitioning an Interface out
of the TIME_SYNCING state.

An Interface may enter and exit the TIME_SYNCING Lifecycle State an arbitrary number of times.

In the TIME_SYNCING Lifecycle State, the following Interface States are allowed as described in later
sections:

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 27

Sub-State Value

DETECT DETECT_ACTIVE

V_SYS V_SYS_ON

V_CHG V_CHG_OFF or V.CHG_ON

WAKE WAKE_UNSET or WAKE_ASSERTED or WAKE_DEASSERTED
UNIPRO UPRO_UP

REFCLK REFCLK_ON

RELEASE RELEASE_DEASSERTED

INTF_.TYPE IFT_GREYBUS

ORDER ORDER_PRIMARY or ORDER_SECONDARY
MAILBOX MAILBOX_GREYBUS

Table 5.18: TIME_SYNCING Lifecyle State

SUSPENDED

The SUSPENDED Lifecycle State is a low-power state during which some internal state within the Interface
is maintained, and system power is still applied. No Greybus Protocol communication with the Interface is
possible when the Interface is in the SUSPENDED state.

An Interface shall not enter this state from the ENUMERATED state unless all bundles associated with it
have entered the BUNDLE_SUSPENDED or BUNDLE_OFF state.

An Interface shall not alter its Manifest while it is entering, in, or exiting the SUSPENDED state.
In the SUSPENDED Lifecycle State, the following Interface States are allowed as described in later sections:

Sub-State Value
DETECT DETECT_ACTIVE

V_SYS V_SYS_ON

V_CHG V_CHG_OFF or V.CHG_ON
WAKE WAKE_UNSET

UNIPRO UPRO_HIBERNATE

REFCLK REFCLK_OFF

RELEASE RELEASE_DEASSERTED

INTF_.TYPE IFT_GREYBUS

ORDER ORDER_PRIMARY or ORDER_SECONDARY
MAILBOX MAILBOX_GREYBUS

Table 5.19: SUSPENDED Lifecyle State

OFF

The OFF Lifecycle State denotes an Interface which has power and communication signals disabled, but
whose INTF_TYPE and ORDER are still known, having been determined during previous Lifecycle States
in the Interface Lifecycle.

An Interface shall not enter this state from the ENUMERATED state unless all bundles associated with it
have entered the BUNDLE_OFF state.

In the OFF Lifecycle State, the following Interface States are allowed as described in later sections:

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

28

Sub-State Value

DETECT DETECT_ACTIVE

V_SYS V_SYS_.OFF

V_CHG V_CHG_OFF

WAKE WAKE_UNSET

UNIPRO UPRO_OFF

REFCLK REFCLK_OFF

RELEASE RELEASE_DEASSERTED

INTF_TYPE IFT_DUMMY, IFT_UNIPRO, or IFT_GREYBUS
ORDER ORDER_PRIMARY or ORDER_SECONDARY
MAILBOX MAILBOX_NULL

Table 5.20: OFF Lifecyle State

DETACHED

The DETACHED Lifecycle State is a special case. In this Lifecycle State, no Module is attached to the

Interface Block.

The SVC and AP have otherwise coordinated to disable power and other signaling to the Interface Block,

as in the OFF Lifecycle State.

The unique Interface State possible in the DETACHED Lifecycle State is:

Sub-State Value

DETECT DETECT_INACTIVE
V_SYS V_SYS_.OFF

V_CHG V_CHG_OFF

WAKE WAKE_UNSET
UNIPRO UPRO_OFF

REFCLK REFCLK_OFF
RELEASE RELEASE_DEASSERTED
INTF.TYPE IFT_.UNKNOWN
ORDER ORDER_UNKNOWN
MAILBOX MAILBOX_NULL

Table 5.21: DETACHED Lifecyle State

Bundle Power States

A Bundle represents a device in Greybus and as such is the smallest power-manageable entity. A Bundle is
always in one of the following power states: BUNDLE_ACTIVE, BUNDLE_SUSPENDED or BUNDLE_OFF.

The Bundle power states impact the Interface Lifecycle transitions between the ENUMERATED, SUS-
PENDED and OFF states. For example, an Interface shall not enter the SUSPENDED state unless all
Bundles associated with it are already in BUNDLE_SUSPENDED or BUNDLE_OFF state.

A Bundle State change request can only be issued by the AP when the Interface is in the ENUMFERATED
state.

After an Interface completes the transition to the ACTIVATED state, a Bundle is in the BUNDLE_OFF
state and shall be activated only when requested by the AP.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 29

All Bundles are required to support four power-state transitions: BUNDLE_ACTIVE -> BUN-
DLE_OFF, BUNDLE_OFF -> BUNDLE_ACTIVE, BUNDLE_ACTIVE -> BUNDLE_SUSPENDED and
BUNDLE_SUSPENDED -> BUNDLE_ACTIVE.

A detailed specification of the Bundle and Interface power-management flow can be found in sections de-
scribing the related Greybus Operations.

BUNDLE_ACTIVE

The underlying hardware is fully operational, powered and Greybus Connections for all CPorts associated
with this Bundle can be established if required by the AP. The Bundle shall enter this state only when its
corresponding Interface is in the ENUMERATED state.

BUNDLE_SUSPENDED

The underlying hardware is in a low-power state and Greybus Connections for all CPorts associated with this
Bundle are closed, but the internal context may be preserved (in an implementation-specific way) allowing
the Bundle to quickly transition back to the BUNDLE_ACTIVE state. Any Greybus Connection that the
AP might want to use shall be re-established when transitioning back to the BUNDLE_ACTIVE state.

BUNDLE_OFF

The underlying hardware is disabled and the context is lost. Greybus Connections for all CPorts associated
with this Bundle are closed.

This is the default state of a Bundle after the Boot (ATTACHED — ACTIVATED) stage.

Special AP Module Requirements

As stated above, a Greybus System contains an AP Module and an SVC. This section defines special
requirements related to these components.

e The AP Module shall be connected to the Frame via Interface Blocks whose Interface IDs are known
to the SVC. The AP Module shall contain Interfaces as other Modules do, but these Interfaces shall
not provide Control CPorts.

For convenience, the Interface States with these Interface IDs are the AP Interface States, the corre-
sponding Interface Blocks are AP Interface Blocks, and the corresponding Interfaces are AP Interfaces.

Each AP Interface shall provide a CPort whose user can be configured to communicate with the SVC
over a Greybus Connection implementing the SVC Protocol.

e The Interface Blocks by which the AP Module connects to the Frame may differ from those by which
other Modules attach to the Frame, but AP Interface Blocks nonetheless have an associated Interface
State as specified above.

e The following sub-states for all AP Interface States may, according to the implementation, be set by
the AP, not the SVC:

— REFCLK
e The following sub-states for all AP Interface States are defined as these constant values:

— DETECT is DETECT_ACTIVE

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

30

V_SYS is V.SYS_ON

V_CHG is V.CHG_OFF

RELEASE is RELEASE DEASSERTED
INTF_TYPE is IFT_GREYBUS
ORDER is ORDER_.UNKNOWN

e The AP Module shall be able to restore the SVC to its reset state, and to release it from reset.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 31

Chapter 6

Interface Information

Imitation is the sincerest form of flattery.

— Charles Caleb Colton

A Greybus Interface shall provide self-descriptive information in order to establish communications with
other Interfaces on the UniPro network. This information is provided via two mechanisms:

e The Manifest, which describes components present within the Interface that are accessible via UniPro.
The Manifest is a data structure, which includes a set of Descriptors, that presents a functional de-
scription of the Interface. Together, these Descriptors define the Interface’s capabilities and means of
communication via UniPro from the perspective of the application layer and above.

e Greybus Interface Attributes, which are UniPro DME attributes which also provide identifying infor-
mation about the Interface.

Manifest

The Manifest is a contiguous block of data that includes a Manifest Header and a set of Descriptors. When
read, a Manifest is transferred in its entirety. This allows the Interface to be described to the AP Module
all at once, alleviating the need for multiple communication messages during the enumeration phase of the
Interface.

Manifest Data Requirements

All data found in Manifest structures defined below shall adhere to the following general requirements:
e All numeric values shall be unsigned unless explicitly stated otherwise.
e All descriptor field values shall have little endian format.
e Numeric values prefixed with 0x are hexadecimal; they are decimal otherwise.
e All offset and size values are expressed in units of bytes unless explicitly stated otherwise.
e All string descriptors shall consist of UTF-8 encoded characters.

e All headers and descriptor data within a Manifest shall be implicitly followed by pad bytes as necessary
to bring the structure’s total size to a multiple of 4 bytes.

e Accordingly, the low-order two bits of all header size field values shall be 00.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 32

Offset Field Size Value Description

0 size 2 Number Size of the entire manifest
2 version_major 1 0 Greybus major version

3 version_minor 1 1 Greybus minor version

Table 6.1: Manifest Header

Offset Field Size Value Description

0 size 2 Number Size of this descriptor
2 type 1 Number Descriptor type
3 (pad) 1 0 Reserved (pad to 4 bytes)

Table 6.2: Descriptor Header

e Any reserved or unused space (including implicit padding) in a header or descriptor shall be ignored
when read, and zero-filled when written.

e All major structures (like the Manifest header) and interface Protocols (like that between the AP
Module and SVC) shall be versioned, to allow future extensions (or fixes) to be added and recognized.

Manifest Header

The Manifest Header is present at the beginning of the Manifest and defines the size of the manifest and the
version of the Greybus Protocol with which the Manifest complies.

The values of version_major and version_minor shall refer to the highest version of this document (currently
0.1) with which the format complies.

version_minor increments with modifications to the Greybus definition, in such a way that any Protocol
handler that supports the version_major can correctly interpret a Manifest in the modified format. A
changed version_major indicates major differences in the Manifest format. It is not expected that a parser
can properly interpret a Manifest whose version_major is greater than the version_major supported by the
parser.

All Manifest parsers shall be able to interpret manifests formatted using older (lower numbered) Greybus
versions, such that they still work properly (i.e. backwards compatibility is required).

The layout for the Manifest Header can be seen in Table 6.1.

Descriptors

Following the Manifest Header is one or more Descriptors. Each Descriptor is composed of a Descriptor
Header followed by Descriptor Data. The format of the Descriptor Header can be seen in Table 6.2.

Descriptor type

The format of the Descriptor Data depends on the type of the descriptor, which is specified in the header.
The known descriptor types and their values are described in Table 6.3.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 33

Descriptor Type Value
Invalid 0x00
Interface 0x01
String 0x02
Bundle 0x03
CPort 0x04

(All other values reserved) 0x05..0xff

Table 6.3: Descriptor Type

Offset Field Size Value Description

0 size 2 0x0008 Size of this descriptor

2 type 1 0x01 Type of the descriptor (Interface)

3 (pad) 1 0 Reserved (pad to 4 byte boundary)

4 vendor_string_id 1 ID String ID for the vendor name

5 product_string_id 1 ID String ID for the product name

6 features 1 Bit Mask Greybus Interface Descriptor Feature Bits
7 (pad) 1 0 Reserved (pad to 4 byte boundary)

Table 6.4: Interface Descriptor

Interface Descriptor

Interface descriptor describes an access point for a Module to the UniPro network. Each interface represents
a single physical port through which UniPro packets are transferred. Every Module shall have at least one
interface. Each interface has a unique ID within the Frame.

This descriptor describes Interface-specific values as set by the vendor who created the Interface. Every
Manifest shall have exactly one Interface descriptor as described in Table 6.4.

vendor_string_id is a reference to a specific string descriptor ID that provides a description of the vendor
who created the Module. If there is no string present for this value in the Manifest, this value shall be 0x00.
See the String Descriptor section below for more details.

product_string_id is a reference to a specific string descriptor ID that provides a description of the product.
If there is no string present for this value in the Manifest, this value shall be 0x00. See the String Descriptor
section below for more details.

Greybus Interface Descriptor Feature Bits

Table 6.5 defines the bits which specify the set of features supported by an Interface.

Symbol Descirption Value
GB_INTERFACE_TIME_SYNC The Interface supports Greybus TimeSync Operations 0x01
(All other values are reserved) 0x02..0x80

Table 6.5: Interface Descriptor Feature Bits

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 34

Offset Field Size Value Description

0 size 2 Number Size of this descriptor

2 type 1 0x02 Type of the descriptor (String)

3 (pad) 1 0 Reserved (pad to 4 byte boundary)
4 length 1 Number Length of the string in bytes

5 id 1 1D String ID for this descriptor

6 string length UTF-8 Characters for the string

6+length (pad) 0-3 0 Reserved (pad to 4 byte boundary)

Table 6.6: String Descriptor

Offset Field Size Value Description

0 size 2 0x0008 Size of this descriptor

2 type 1 0x03 Type of the descriptor (Bundle)

3 (pad) 1 0 Reserved (pad to 4 byte boundary)
4 id 1 ID Interface-unique ID for this Bundle
) class 1 Number See Table 6.8

6 (pad) 2 0 Reserved (pad to 8 bytes)

Table 6.7: Bundle Descriptor

String Descriptor

A string descriptor provides a human-readable string for a specific value, such as a vendor or product string.
Strings consist of UTF-8 characters and are not required to be zero terminated. A string descriptor shall be
referenced only once within the Manifest, e.g. only one product (or vendor) string field may refer to string
ID 2. The format of the string descriptor can be found in Table 6.6.

The id field shall not be 0x00, as that is an invalid String ID value.
The length field excludes any trailing padding bytes in the descriptor.

Bundle Descriptor

A Bundle represents a device in Greybus. Bundles communicate with each other on the network via one or
more UniPro CPorts.

The id field uniquely identifies a Bundle within the Interface. The first Bundle shall have ID 0, the second
(if present) shall have value 1, and so on. The purpose of these Ids is to allow CPort descriptors to define
which Bundle they are associated with. The id field for a Bundle Descriptor shall not have value 0xff, as
that is an invalid Bundle ID value. The Bundle descriptor is defined in Table 6.7.

The class field defines the class of the bundle. This shall be used by the AP to find what to expect from the
bundle and how to configure/use it. Class types are defined in Table 6.8.

CPort Descriptor

A CPort Descriptor describes a CPort implemented within the Interface. Each CPort is associated with
one of the Interface’s Bundles, and has an ID unique among CPorts in that Interface. A CPort Descriptor
declares the Greybus Protocol implemented by that CPort’s User. This information may be used by the AP
Module to interact with the CPort User.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

Class type Value
Control 0x00
Unused 0x01
Reserved 0x02
Reserved 0x03
Reserved 0x04
HID 0x05
Reserved 0x06
Reserved 0x07
Power Supply 0x08
Reserved 0x09
Bridged PHY 0x0a
Reserved 0x0b
Display 0x0c
Camera 0x0d
Sensor 0x0e
Lights 0x0f
Vibrator 0x10
Loopback 0x11
Audio 0x12
Reserved 0x13
Unused 0x14
Bootrom 0x15
Firmware Management 0x16
Log 0x17
(All other values reserved) 0x18..0xfd
Raw Oxfe
Vendor Specific Oxft

Table 6.8: Bundle Class Types

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 36

Offset Field Size Value Description

0 size 2 0x0008 Size of this descriptor

2 type 1 0x04 Type of the descriptor (CPort)

3 (pad) 1 0 Reserved (pad to 4 byte boundary)

4 id 2 ID ID (destination address) of the CPort

6 bundle 1 ID Bundle ID this CPort is associated with
7 protocol 1 Number See Table 6.10

Table 6.9: CPort Descriptor

Greybus Interfaces shall contain a special Control CPort, which as CPort ID zero; the CPort User of this
CPort shall implement the Control Protocol. An Interface Manifest shall not contain a CPort Descriptor
with id field equal to zero.

The CPort Descriptor is defined in Table 6.9. The details of these Protocols are defined in the sections
Device Class Connection Protocols and Bridged PHY Connection Protocols below.

Todo

The details of how the CPort identifier is determined will be specified in a later version of this document.

The id field is the CPort identifier used by other Modules to direct traffic to this CPort. The IDs for CPorts
using the same Interface shall be unique. Certain low-numbered CPort identifiers (such as the control
CPort) are reserved. Implementors shall assign CPorts low-numbered ID values, generally no higher than
31. (Higher-numbered CPort ids impact on the total usable number of UniPro devices and typically should
not be used.)

Greybus Interface Attributes

A Greybus Interface capable of UniPro communication may support retrieval via DME Peer Get requests of
the following values. If any of the Greybus Interface Attributes listed below is supported by an implemen-
tation, all shall be supported.

If the Greybus Interface Attributes are supported, their attribute IDs are implementation-defined.

e Ara Vendor ID: a 32 bit identifier, which identifies the vendor of the Project Ara Module containing
the Interface.

e Ara Product ID: a 32 bit identifier which in combination with the Ara Vendor ID uniquely identifies
the Greybus Module containing the Interface as a particular product released by that vendor.

e Ara Serial Number: a 64 bit identifier which is unique among all Modules, regardless of Ara Vendor
ID or Ara Product ID. The Ara Serial Number may require multiple DME attributes for storage.

e Ara Initialization Status: a 32 bit identifier, which defines the initialization status of the Interface.
When supported, this may be retrieved during interface initialization, as described in later chapters.

If supported, the values of the Ara Initialization Status attribute are implementation-defined, with
one exception: the values 0x00000006 and 0x00000009 are reserved for Interfaces implementing the
Bootrom Protocol. Unless an Interface implements that Protocol, the Interface shall not set its Ara
Initialization Status attribute to either of those values.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

Protocol Value
Control 0x00
Unused 0x01
GPIO 0x02
12C 0x03
UART 0x04
HID 0x05
USB 0x06
SDIO 0x07
Power Supply 0x08
PWM 0x09
Unused 0x0a
SPI 0x0b
Display 0x0c
Camera Management 0x0d
Sensor 0x0e
Lights 0x0f
Vibrator 0x10
Loopback 0x11
Audio Management 0x12
Audio Data 0x13
SvC 0x14
Bootrom 0x15
Camera Data 0x16
Firmware Download 0x17
Firmware Management 0x18
Component Authentication 0x19
Log Oxla
(All other values reserved) 0Ox1b..0xfd
Raw Oxfe
Vendor Specific Oxff

Table 6.10: CPort Protocol Numbers

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

38

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 39

Chapter 7

Greybus Operations

Greybus communication is built on the use of UniPro messages to send information between Modules. And
although UniPro offers reliable transfer of data frames between interfaces, it is often necessary for the sender
to know whether the effects of sending a message were what was expected. For example, a request sent to
a UniPro switch controller requesting a reconfiguration of the routing table could fail, and proceeding as if
a failure had not occurred in this case leads to undefined (and possibly dangerous) behavior. Similarly, the
AP Module likely needs to retrieve information from other Modules; this requires that a message requesting
information be paired with a returned message containing the information requested.

For this reason, Greybus performs communication between Modules using Greybus Operations. A Greybus
Operation defines an activity (such as a data transfer) initiated in one Module that is implemented (or
executed) by another. The particular activity performed is defined by the operation’s type. An operation is
generally implemented by a pair of messages—one containing a request, and the other containing a response,
but unidirectional operations (i.e. requests without matching responses) are also supported. Both messages
contain a simple header that includes the type of the operation and size of the message. In addition, each
operation has a unique ID, and both messages in an operation contain this value so a response can be
associated with its matching request (unidirectional operations use a reserved ID). Finally, all responses
contain a byte in message header to communicate status of the operation—either success or a reason for a
failure.

Whether a particular operation has a response message or not (i.e. is unidirectional) is protocol dependent.
It usually makes sense for operations which may be initiated by the AP Module to have responses as any
errors can be logged and often also reported up the stack (e.g. to userspace).

Operations are performed over Greybus Connections. A connection is a communication path between two
Modules. Each end of a connection is a UniPro CPort, associated with a particular interface in a Greybus
Module. A connection can be established once the AP Module learns of the existence of a CPort in another
Module. The AP Module shall allocate a CPort for its end of the connection, and once the UniPro network
switch is configured properly the connection can be used for data transfer (and in particular, for operations).

Each CPort in a Greybus Module has associated with it a Protocol. The Protocol dictates the way the CPort
interprets incoming operation messages. Stated another way, the meaning of the operation type found in a
request message depends on which Protocol the connection uses. Operation type 5 might mean “receive data”
in one Protocol, while operation 5 might mean “go to sleep” in another. When the AP Module establishes
a connection with a CPort in another Module, that connection uses the CPort’s advertised Protocol.

Greybus Protocols may support Protocol Versions.

The Greybus Operations mechanism forms a base layer on which other Protocols are built. Protocols define
the format of request messages, their expected response data, and the effect of the request on state in one
or both Modules. Users of a Protocol can rely on the Greybus core getting the operation request message to
its intended target, and transferring the operation status and any other data back. In the explanations that

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 40

Offset Field Size Value Description

0 size 2 Number Size of this operation message

2 id 2 Number Requestor-supplied unique request identifier
4 type 1 Number Type of Greybus operation (Protocol-specific)
5 status 1 Number Operation result (response message only)

6 (pad) 2 0 Reserved (pad to 8 bytes)

Table 7.1: Operation Message Header

follow, we refer to the interface through which a request operation is sent as the source, and the interface
from which the response is sent as the destination.

Message Data Requirements

All data found in message structures defined below shall adhere to the following general requirements:
e All numeric values shall be unsigned unless explicitly stated otherwise.
e All numeric field values shall have little endian format.
e Numeric values prefixed with Ox are hexadecimal; they are decimal otherwise.
e All offset and size values are expressed in units of bytes unless explicitly stated otherwise.
e All string values shall consist of UTF-8 encoded characters.
e String values shall be paired with a numeric value indicating the number of characters in the string.
e String values shall not include terminating NUL characters.
e Any reserved space in a message structure shall be ignored when read, and zero-filled when written.
e All Protocols shall be versioned, to allow future extensions (or fixes) to be added and recognized.

Fields within a message payload have no specific alignment requirements. Message headers are padded to
fill 8 bytes, so the alignment of a message’s payload is comparable to that of its header. If alignment is
required, it is achieved using explicitly defined reserved fields.

Operation Messages

Operation request messages and operation response messages have the same basic format. Each begins with
a short header, and is followed by payload data. A response message records an additional status value in
the header, and both requests and responses may have a zero-byte payload.

Operation Message Header

Table 7.1 summarizes the format of an operation message header.

The size includes the operation message header as well as any payload that follows it. As mentioned earlier,
the meaning of a type value depends on the Protocol in use on the connection carrying the message. Only
127 operations are available for a given Protocol, 0x01..0x7f. Operation 0x00 is reserved as an invalid value
for all Protocols. The high bit (0x80) of an operation type is used as a flag that distinguishes a request
operation from its response. For requests, this bit is 0, for responses, it is 1. For example the request and
response messages for operation 0x0a contain 0x0a and 0x8a (respectively) in their type fields. The ID allows

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 41

Status Value Meaning

GB_OP_SUCCESS 0x00 Operation completed successfully
GB_OP_INTERRUPTED 0x01 Operation processing was interrupted
GB_.OP_TIMEOUT 0x02 Operation processing timed out
GB_OP_NO_MEMORY 0x03 Memory exhaustion prevented operation completion
GB_OP_PROTOCOL_BAD 0x04 Protocol is not supported by this Greybus implementation
GB_OP_OVERFLOW 0x05 Request message was too large

GB_OP_INVALID 0x06 Invalid argument supplied

GB_.OP_RETRY 0x07 Request should be retried

GB_OP_NONEXISTENT 0x08 The device does not exist
GB_OP_INVALID_STATE 0x09 Request is incompatible with receiving Bundle state
Reserved 0x0a to O0xfd Reserved for future use
GB_OP_UNKNOWN_ERROR Oxfe Unknown error occured

GB_OP_INTERNAL Oxff Invalid initial value.

Table 7.2: Operation Status Values

many operations to be “in flight” on a connection at once. The special ID 0 is reserved for unidirectional
operations.

A connection Protocol is defined by describing the format of the operations supported by the Protocol. Each
operation specifies the payload portions of the request and response messages used for the Protocol, along
with all actions or state changes that take place as a result of the operation.

Greybus Operation Status

Table 7.2 defines the Greybus Operation status values.

The Greybus Operation status shall be determined by checking the status field of the Greybus Operation
Message Header of the Response as described in Table 7.1.

A Connection Protocol can define its own status values in its Response payload if required. These status
values shall be interpreted only by its respective protocol handler.

Note that GB_.OP_INTERNAL shall not be used in a response message. It is reserved for internal use by
the Greybus application stack only.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

42

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 43

Chapter 8

Connection Protocols

The following sections define the request and response message formats for all operations for specific con-
nection Protocols. Requests are most often (but not always) initiated by the AP Module. Each request has
a unique identifier, supplied by the requestor, and each response includes the identifier of the request with

which it is associated. This allows operations to complete asynchronously, so multiple operations can be “in
flight” between the AP Module and a UniPro-attached adapter at once.

Each response includes a status byte in its message header, which communicates whether any error occurred
in delivering or processing a requested operation. If the operation completed successfully, the status value
is GB_.OP_SUCCESS. Otherwise, the reason it was not successful is conveyed by one of the positive values
defined in Table 7.2. All Protocols defined herein are subject to the Message Data Requirements listed above.

Protocol Versions

Note: Greybus no longer supports a common Version Operation for Individual Protocols, except for the
SVC' Protocol, the Control Protocol, and the Bootrom Protocol.

The Protocol version comprises of two one-byte values, major and minor. A Protocol definition can evolve
to add new capabilities, and as it does so, its version changes. If existing (or old) Protocol handling code
which complies with this specification can function properly with the new feature in place, only the minor
version of the Protocol shall change. Any time a Protocol changes in a way that requires the handling code
be updated to function properly, the Protocol’s major version shall change.

Two Modules may implement different versions of a Protocol, and as a result they shall negotiate a common
version of the Protocol to use. This is done by each side exchanging information about the version of the
Protocol it supports at the time a connection between Module interfaces is set up. The version of a particular
Protocol advertised by a Module is the same as the version of the document that defines the Protocol (so for
Protocols defined herein, the version is 0.1). In the future, if the Protocol specifications are removed from
this document, the versions will become independent of the overall Greybus Specification document.

To agree on a Protocol, an operation request supplies the (greatest) major and minor version of the Protocol
supported by the source of a request. The request destination compares that version with the (greatest)
version of the Protocol it supports. The version that is the largest common version number of the Protocol
sent by both sides shall be the version that is to be used in communication between the devices. This chosen
version is returned back as a response of the request.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 44

Offset Field Size Value Description
0 version_major 1 Number Offered Protocol major version
1 version_minor 1 Number Offered Protocol minor version

Table 8.1: Common Greybus Protocol Version Request

Common Greybus Protocol Version Operation

Some Connection Protocols specify an Operation which allows the Protocol handling software on both ends
of a connection to negotiate the version of the Protocol to use. This Operation shall be named the Protocol
Version Operation. All Connection Protocol Operations with this name shall have the same semantics, as
defined in this section.

Conceptually, this operation is:

int version(u8 offer major, u8 offer minor, u8 *major, u8 *minor);
Negotiates the major and minor version of the Protocol used for communication over the connection.
The requestor offers the version of the Protocol it supports. The respondent replies with the version
that will be used - either the one offered if supported, or its own (lower) version otherwise.

The request value of each Protocol Version Operation shall be 0x01, and the response value for this Operation
shall be 0x81.

For example, the corresponding Operation within the Greybus Control Protocol is named the Greybus
Control Protocol Version Operation. Its request and response values are respectively 0x01 and 0x81.

For this operation, the request specifies the greatest version of the Protocol supported by the requestor.
The response contains the version that shall be used for further communication — either the one offered if
supported, or a lower version otherwise.

The following sections define the contents and semantics of this Operation’s Request and Response messages.

Common Greybus Protocol Version Request

Table 8.1 defines the request payload for each Protocol’s Protocol Version Operation. The request supplies
the greatest major and minor version of the Connection Protocol supported by the sender.

The Common Greybus Protocol Version Request shall be sent only by the AP for all Protocols except the
SVC Protocol. In the case of the SVC protocol, the request shall be sent only by the SVC.

The values of the version_major and version_minor fields shall be specified on a per-protocol basis; the
subsequent sections of this document which define individual Connection Protocols specify the values of
these fields for this Operation according to the particular Protocol defined in each section.

Common Greybus Protocol Version Response

Table 8.2 defines the response payload for each Protocol’s Protocol Version Operation. The response supplies
the version of the protocol that shall be used for any subsequent communication via the Connection.

The values of the version_major and version_minor fields shall be specified on a per-protocol basis; the
subsequent sections of this document which define individual Connection Protocols specify the values of
these fields for this Operation according to the particular Protocol defined in each section.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 45

Offset Field Size Value Description
0 version_major 1 Number Offered Protocol major version
1 version_minor 1 Number Offered Protocol minor version

Table 8.2: Common Greybus Protocol Version Request

Offset Field Size Value Description

0 phase 1 1 Current phase in the closure sequence

Table 8.3: Common Greybus Protocol CPort Shutdown Request

Common Greybus Protocol CPort Shutdown Operation

With some exceptions, every Connection Protocol implements a “CPort Shutdown” Operation. This Opera-
tion is used as part of a sequence that closes a Greybus Connection, as described in Connection Management.

Common Greybus Protocol CPort Shutdown Request

Table 8.3.2 defines the Request payload for a Protocol’s CPort Shutdown Operation. The value of the phase
field in the Request payload shall equal one.

This Request shall only be sent by the AP. The AP should not send this Request except as described in
Connection Management. The results of sending this Request under other circumstances are undefined.

Common Greybus Protocol CPort Shutdown Response

A Protocol’s CPort Shutdown Response contains no payload.

The status byte in the Response’s Message Header shall equal GB_OP_SUCCESS.

Connection Transmission Restrictions

Greybus Connections use UniPro CPorts to exchange application-specific payload data and, when the UniPro
End-to-End Flow Control (E2EFC) feature is enabled, Flow Control Tokens.

Within a Greybus System, this exchange of data and Flow Control Tokens is subject to certain restrictions
and recommendations defined in this section.

Specifically, when an Interface “may transmit Segments on a CPort”, the following requirements and
recommendations hold:

e Interfaces shall transmit Segments on CPorts only when permitted or required to do so by [MIPI01],
including Segments carrying Flow Control Tokens, regardless of whether the Segments carry payload
data.

e Interfaces shall transmit Segments on CPorts involved in Greybus Connections only when permitted or
required to do so by the Greybus Connection Protocol implemented by their respective CPort Users.

e If the UniPro E2EFC feature is enabled on a connected CPort, Interfaces should ensure that Segments
carrying Flow Control Tokens are transmitted by that CPort as buffer space becomes available to its
CPort User.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 46

Additionally, when an Interface “shall halt Segment transmission on a CPort”, the Interface shall
ensure that the CPort’s User shall subsequently neither:

e request the transfer of a Message Fragment to its peer CPort User, nor
e signal its ability to consume more data to its local CPort.

The CPort User may terminate a currently ongoing UniPro Message transmission or complete ongoing flow-
control related transactions with its local CPort as a result of the Interface ensuring these conditions hold.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 47

Chapter 9

Special Protocols

This section defines three Protocols, each of which serves a special purpose in a Greybus system.

The first is the Control Protocol. Interfaces may provide a CPort whose user implements the Control
Protocol. The AP may establish a Connection between one of its Interfaces’ CPorts and such CPorts. If it
does, the AP may subsequently send Operations on that Connection to perform basic initialization of the
Interface, configure it, send it notifications, and otherwise interact with the Interface at a high level. The
AP may also use Control Connections while establishing and closing other Connections to CPorts declared
in the Interface’s Manifest.

The second is the SVC Protocol, which is used only between the SVC and AP Module. The SVC provides
low-level control of the UniPro network. The SVC performs almost all of its activities under direction of the
AP Module, and the SVC Protocol is used by the AP Module to exert this control. The SVC also uses this
protocol to notify the AP Module of events, such as the insertion or removal of a Module.

The third is the Bootrom Protocol, which is used between the AP Module and any other module’s bootloader
to download firmware executables to the module. When a module’s manifest includes a CPort using the
Bootrom Protocol, the AP can connect to that CPort and download a firmware executable to the module.
Bootrom protocol is deprecated for new designs requiring Firmware download to the Module. The Firmware
Download Protocol should be used for any new designs.

Control Protocol

Interfaces with INTF_TYPE equal to IFT_GREYBUS shall provide a CPort that responds to the Operations
defined in this section. Such a CPort is a Control CPort. If an Interface provides a Control CPort, its CPort
ID shall be zero.

Such Interfaces shall be prepared to receive Operation requests on that CPort under conditions defined
later in this chapter. In particular, this may occur as a result of successful Interface Activate and Interface
Resume Operations, which are defined below in the SVC' Protocol.

Also using a sequence of SVC Protocol Operations, the AP may establish a Greybus Connection to a Control
CPort if it has determined that the Interface is prepared for incoming Operations on that CPort, and the
Connection is not already established. Any such Connection is a Control Connection. This sequence is
defined in Control Connection Establishment.

Interfaces are not notified when Control Connections are established.

Only the AP shall send requests on a Control Connection. Other Interfaces shall only send response messages.
An Interface shall send a response on a Control Connection only after receiving a request from the AP.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 48

Conceptually, the Operations in the Greybus Control Protocol are:

int

int

int

int

int

int

int

int

int

int

int

int

cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

version(u8 offer major, u8 offer minor, u8 *major, u8 *minor);
Refer to Common Greybus Protocol Version Operation.

get manifest_size(ul6 *manifest_size);
This Operation is used by the AP to discover the size of a module’s Interface Manifest. This is used
after the SVC has discovered which Module contains the AP. The response to this Operation contains
the size of the manifest, which is used by the AP to fetch the manifest later. This operation is only
initiated by the AP.

get manifest(u8 *manifest);
This Operation is used by the AP after the SVC has discovered which Module contains the AP. The
response to this Operation contains the manifest of the Module, which is used by the AP to determine
the functionality module provides. This operation is only initiated by the AP.

connected(ul6 cport_id);

This Operation is used to notify an Interface that a Greybus connection has been established using
the indicated CPort. Upon receiving this request, an Interface shall be prepared to receive messages
on the indicated CPort. The Interface may send messages over the indicated CPort once it has sent a
response to the connected request. This operation is never used for control CPort.

disconnecting(ul6 cport_id);
This Operation is used by the AP Module to inform an Interface that the process of disconnecting a
previously established Greybus connection has begun.

disconnected(ul6é cport_id);
This Operation is used to notify an Interface that a previously established Greybus connection may
no longer be used. This operation is never used for control CPort.

timesync_enable(u8 count, u64 frame time, u32 strobe_delay, u32 refclk);
The AP Module uses this operation to inform the Interface that frame-time is being enabled.

timesync_disable(void);
The AP Module uses this operation to switch off frame-time logic in an Interface.

timesync_authoritative(u64 *frame_time) ;
The AP Module uses this operation to inform an Interface of the authoritative frame-time reported by
the SVC for each TIME_SYNC strobe.

timesync_get_last_event(u64 *frame_time);
The AP Module uses this operation to get the frame-time at the last pulse on the wake pin of a relevant
Interface. This operation is used in conjunction with an SVC timesync-ping operation to verify the
local time at a given Interface.

bundle_version(u8 bundle_id, u8 #*major, u8 *minor);
This Operation is used by the AP to get the version of the Bundle Class implemented by a Bundle.

void mode_switch(void);

int

int

This Operation can be used by the AP to signal to the Interface that it may reinitialize itself and alter
the Bundles it previously described to the AP by sending it an Interface Manifest.

bundle_suspend(u8 bundle_id);
This Operation may be used by the AP to request the Bundle to enter a low-power state.

bundle_resume (u8 bundle_id);
This Operation may be used by the AP to request the Bundle to exit the low-power state.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 49

Control Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80
Protocol Version 0x01 0x81
Reserved 0x02 0x82
Get Manifest Size 0x03 0x83
Get Manifest 0x04 0x84
Connected 0x05 0x85
Disconnected 0x06 0x86
TimeSync enable 0x07 0x87
TimeSync disable 0x08 0x88
TimeSync authoritative 0x09 0x89
Reserved 0x0a 0x8a
Bundle Version 0x0b 0x8b
Disconnecting 0x0c 0x8c
TimeSync get last event 0x0d 0x8d
Mode Switch 0x0e N/A
Bundle Suspend 0x0f 0x8f
Bundle Resume 0x10 0x90
Bundle Deactivate 0x11 0x91
Bundle Activate 0x12 0x92
Interface Suspend Prepare 0x13 0x93
Interface Deactivate Prepare 0x14 0x94
Interface Hibernate Abort 0x15 0x95
(all other values reserved) 0x16..0x7e 0x96..0xfe
Invalid 0x7f Oxff

Table 9.1: Control Operation Types

int bundle_deactivate(u8 bundle_id);
This Operation may be used by the AP to request that a Bundle be powered off.

int bundle_activate(u8 bundle_id);
This Operation may be used by the AP to request that a Bundle be powered on.

int intf_suspend_prepare(void);
This Operation may be used by the AP to request the Interface to prepare for the transition to a
low-power state.

int intf _deactivate_prepare(void);
This Operation may be used by the AP to request the Interface to prepare to be powered down.

void intf hibernate_abort(void);
This Operation may be used by the AP to abort a previously issued Interface Suspend Prepare or
Interface Deactivate Prepare request.

Greybus Control Operations

All control Operations are contained within a Greybus control request message. Most of control requests
results in a matching response, except mode_switch which is unidirectional. The request and response
messages for each control Operation are defined below.

Table 9.1 defines the Greybus Control Protocol Operation types and their values. Both the request type and
response type values are shown.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 50

Offset Field Size Value Description

0 manifest_size 2 Number Size of the Manifest

Table 9.2: Control Protocol Get Manifest Size Response

Greybus Control CPort Shutdown Operation

The Greybus Control CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Oper-
ation for the Control Protocol.

Greybus Control Protocol Version Operation
The Greybus Control Protocol Version Operation is the Common Greybus Protocol Version Operation for
the Control Protocol.

Greybus implementations adhering to the Protocol specified herein shall specify the value 0 for the ver-
sion_major and 1 for the version_minor fields found in this Operation’s request and response messages.

Greybus Control Get Manifest Size Operation

The Greybus Control Get Manifest Size Operation is used by the AP to ensure an Interface’s Manifest is
available for retrieval via Greybus. After this Operation is successfully exchanged, the AP may retrieve the
Manifest using the Greybus Control Get Manifest Operation.

Although the AP may send this request at any time, it should only do so while enumerating an Interface,
as defined in ENUMERATED. The effect of this Operation under other conditions is unspecified.

Greybus Control Get Manifest Size Request

The Greybus Control Get Manifest Size Request has no payload.

The Greybus Control Get Manifest Size Request is sent by the AP to the Interface in order to request that
the Interface ensure its Manifest data structure is available for subsequent retrieval.

If an Interface is being enumerated, the Interface shall ensure an Interface Manifest is available for later
retrieval by the AP as a result of receiving this request. It shall then notify the AP of the size of this
Manifest in the response, as described below.

Greybus Control Get Manifest Size Response
The Greybus Control Get Manifest Size Response contains a two byte field, manifest_size. If the response
status is not GB_OP_SUCCESS, the value of manifest_size is undefined and shall be ignored.

The manifest_size field in the response payload shall contain the size in bytes of the Interface Manifest which
may be subsequently retrieved by the AP. If an Interface is being enumerated when it sends this response,
the Interface shall not alter the size of this Interface Manifest as long as it continues being enumerated.

Greybus Control Get Manifest Operation

The Greybus Control Get Manifest Operation is used by the AP to retrieve an Interface’s Manifest via its
Control Connection.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 51

Offset Field Size Value Description

0 manifest variable Data Manifest

Table 9.3: Control Protocol Get Manifest Response

Though the AP may send this request at any time, it should only do so while enumerating an Interface, as
defined in ENUMERATED. The effect of this Operation under other conditions is unspecified.

Greybus Control Get Manifest Request

The Greybus Control Get Manifest Request has no payload.

If the Interface is being enumerated, its Manifest is available for retrieval by the AP. The Interface shall send
it in the response to this request.

Greybus Control Get Manifest Response

The Greybus Control Get Manifest Response contains a block of data that describes the functionality pro-
vided by the Interface. The contents of this data are defined in Manifest. If the response status is not
GB_OP_SUCCESS, the response payload should be empty and shall be ignored.

If the Interface is being enumerated when it sends this response, the size of the Manifest returned by the
Interface in this response shall equal the manifest_size field in the preceding Get Manifest Size Response
payload. The size is otherwise not specified.

The Interface shall ensure that if it is being enumerated and the response status is GB_OP_SUCCESS, the
following shall hold:

1. If the Interface provides CPort Descriptors in the Manifest, then it shall respond to incoming Operation
Requests on those CPorts after the AP establishes Greybus Connections using those CPorts as described
in Connection Management.

2. The Greybus Protocols implemented by the CPort users of any such CPorts shall be as defined in the
Manifest.

When the AP receives a successful response, and parses the Manifest successfully, the Interface’s Lifecycle
State is ENUMERATED. The enumeration procedure guarantees that the Interface State is in one of two
possible values, as follows:

Sub-State Value

DETECT DETECT_ACTIVE
V_SYS V_SYS_.ON

V_CHG V_CHG_OFF
WAKE WAKE_UNSET
UNIPRO UPRO_UP

REFCLK REFCLK_ON

RELEASE RELEASE DEASSERTED

INTF_.TYPE IFT_GREYBUS

ORDER ORDER_PRIMARY or ORDER_SECONDARY
MAILBOX MAILBOX_GREYBUS

Table 9.4: Interface States after Successful Greybus Control Get Manifest Response

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 52

Offset Field Size Value Description

0 cport_id 2 Number CPort that is now connected

Table 9.5: Control Protocol Connected Request

The Interface shall ensure that as long as the Interface State remains this value, that the above list of two
conditions in this section shall continue to hold.

The AP and Interface may subsequently, through Protocol-specific means, change the values of some of these
sub-states without relaxing these requirements.

Greybus Control Connected Operation

Note: The Control Connected Operation is currently defined under the assumption that all Connections
in the Greybus System are between an AP Interface and another, non-AP Interface in the System.

The results in the case of Connections between two Interfaces, neither or both of which are AP Interfaces,
are undefined.

The AP may establish Connections between Interfaces in the Greybus System. If the Interface State of an
Interface has INTF_TYPE IFT_GREYBUS, the AP shall only attempt to establish non-Control Connections
to that Interface if its Lifecycle State is ENUMERATED.

Connection establishment is performed by the AP using a sequence of Operations in the Control and SVC
Protocols, as defined in this chapter. A later chapter, Module and Interface Lifecycles, provides procedures
using these Operations which establish connections in Connection Management. As part of these procedures,
the AP uses a Greybus Control Connected Operation to notify Interfaces when Connections are established.

Greybus Control Connected Request

The Greybus control connected request supplies the CPort ID on the receiving Interface that has been
connected.

The AP should ensure that the CPort ID given by cport_id in the request payload was given in the id field
of a CPort Descriptor in the Interface’s Manifest. The results of this Operation under other circumstances
are undefined.

Interfaces shall not transmit any UniPro Segments on any CPorts identified in their Manifests’ CPort Descrip-
tors before receiving a Control Connected Request indicating that the CPort is now connected, regardless
of whether the Segments contain L4 payload.

After receiving this request, the Interface may transmit Segments on the CPort given by cport_id, as described
in Connection Transmission Restrictions.

Greybus Control Connected Response

The Greybus control connected response message contains no payload.

If the AP receives a Control Connected response with status GB_OP_SUCCESS, it shall store information
indicating that the CPort is now connected on that Interface.

The AP may later close the Greybus Connection and disconnect the CPort using a sequence of Operations
in the Control and SVC Protocols. This procedure is defined in Connection Management, and uses Greybus

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 53

Offset Field Size Value Description

0 cport_id 2 Number CPort that is being disconnected

Table 9.6: Control Protocol Disconnecting Request

Operations defined in this chapter. If this procedure succeeds, the AP no longer needs to store the information
that the CPort is connected.

The AP also no longer needs to store information indicating that a CPort on an Interface is connected if
subsequent Operations guarantee that the Interface’s Lifecycle State is ATTACHED, ACTIVATED, OFF,
or DETACHED.

The AP should not send a Control Connected Request to an Interface with a cport_id field if it has stored
information indicating that the CPort is connected. If this occurs, the results are undefined.

The AP Interface shall not transmit UniPro Segments to a CPort identified by an Interface Manifest’s
CPort Descriptors unless it successfully exchanges a Control Connected Operation with the Interface as part
of Greybus Connection establishment, as described in Non-Control Connection Establishment. After this
successful exchange of a Control Connected Operation, the AP Interface may transmit Segments on the
CPort at its end of the Connection, as described in Connection Transmission Restrictions.

Greybus Control Disconnecting Operation

Note: The Control Disconnected Operation is currently defined under the assumption that all Connections
in the Greybus System are between an AP Interface and another, non-AP Interface in the System.

The results in the case of Connections between two Interfaces, neither or both of which are AP Interfaces,
are undefined.

After establishing a Greybus Connection from an AP Interface to another Interface, the AP may later use
the Greybus Control Disconnecting Operation to notify the Interface that the Connection is being closed,
and thus that the CPort will later be disconnected.

Procedures the AP may use to establish and close Greybus Connections are provided in Connection Man-
agement. Use of this Operation is part of those procedures.

Greybus Control Disconnecting Request
The Greybus Control Disconnecting request supplies the CPort ID on the receiving Interface that is being
closed.

After sending this request to notify the Interface that a Connection is closing, the AP Interface may transmit
Segments on the CPort at its end of the Connection as defined in Connection Transmission Restrictions if
one or more of the following conditions hold:

e when issuing responses to requests it has already received on the Connection,
e when exchanging CPort Shutdown Operations with the Interface, or
e when transmitting UniPro Flow Control Tokens.

The AP Interface shall otherwise halt Segment transmission on the CPort.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 54

Offset Field Size Value Description

0 cport_id 2 Number CPort that is now disconnected

Table 9.7: Control Protocol Disconnected Request

The AP Interface may send a Control Disconnecting Operation with a cport_id field equal to zero when
disconnecting a Control Connection, but should not do so if it has stored information indicating that other
CPorts on that Interface are connected.

After receiving the request, the Interface may transmit Segments on the CPort at its end of the Connection
as defined in Connection Transmission Restrictions if one or more of the following conditions hold:

e when issuing responses on the Connection to Operations whose requests it received before the Control
Disconnecting Operation Request,

e when exchanging CPort Shutdown Operations with the AP, or
e when transmitting UniPro Flow Control Tokens.
The receiving Interface shall otherwise halt Segment transmission on the CPort.

If the receiving Interface issues any Responses on the Connection to Operations whose Requests it received
before this Request, it shall do so before sending the Control Disconnecting Response.

Greybus Control Disconnecting Response

The Greybus Control Disconnecting response message contains no payload.
The response status shall equal GB_.OP_SUCCESS.

Before issuing a response to a Disconnecting request, the Interface shall ensure that any further UniPro
Messages received on the CPort associated with its side of the Connection are immediately discarded, unless
the Messages are well-formed Greybus CPort Shutdown Requests.

Greybus Control Disconnected Operation

Note: The Control Disconnected Operation is currently defined under the assumption that all Connections
in the Greybus System are between an AP Interface and another, non-AP Interface in the System.

The results in the case of Connections between two Interfaces, neither or both of which are AP Interfaces,
are undefined.

The Greybus Control Disconnected Operation is sent to notify an Interface that a Greybus Connection has
been closed. The users of the CPorts at each end of the Connection shall no longer transmit data on their
respective CPorts unless a new Connection is established using those CPorts. Any messages received by
the Interface on the CPort after the Control Disconnected Request is received shall be discarded, unless a
Greybus Connection is later reestablished on that CPort.

Greybus Control Disconnected Request

The Greybus Control Disconnected Request supplies the CPort ID on the receiving Interface for the Greybus
Connection which is now closed. The UniPro CPort on the Interface which was at one end of the Connection
may subsequently be disconnected by the SVC.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 55

Offset Field Size Value Description

0 count 1 Number Number of TIME_SYNC pulses

1 frame_time 8 Number The initial frame-time to intiailze to

9 strobe_delay 4 Number Inter-strobe delay in milliseconds

13 refclk 4 Number The clock rate of the frame-time counter

Table 9.8: Control Protocol TimeSync Enable Request

After receiving the request, the Interface shall perform any implementation-defined procedures required to
make the CPort usable if a Greybus Connection is later reestablished on that CPort. The Interface may set
local UniPro attributes related to that CPort to implementation-defined values as part of this process. If
such procedures are required by the Interface, it shall complete them before sending the response.

Before sending the response, the receiving Interface shall halt Segment transmission on the CPort given by
cport_id as described in Connection Transmission Restrictions.

Greybus Control Disconnected Response

The Greybus Control Disconnected Response message contains no payload.
The response status shall equal GB_.OP_SUCCESS.

After receiving the response, the AP shall halt Segment transmission on the CPort which was at its end of
the Connection which is now closed, as defined in Connection Transmission Restrictions.

Greybus Control TimeSync Enable Operation

The AP Module uses this operation to inform the Interface of an upcoming pulse-train of TIME_SYNC
strobes. The ‘count’ parameter informs the Interface of how many TIME_SYNC strobes will be issued. The
range of the count variable is from 1..4. The ‘frame_time’ parameter informs the Interface to immediately
seeds its frame-time to a value given by the AP. The ‘strobe_delay’ parameter informs the Interface of
the expected delay between each TIME_SYNC strobe. The ‘refclk’ parameter informs the Interface of the
required clock rate to run its frame-time tracking counter at.

A later operation initiated by the AP will inform the Interface of the authoritative frame-time at each
TIME_SYNC strobe.

Greybus Control TimeSync Enable Request
Table 9.8 defines the Greybus Control TimeSync Enable Request payload. The request supplies the num-

ber of TIME_SYNC strobes to come (count), the initial time (frame_time) the delay between each strobe
(strobe_delay) and the required clock rate to run the local timer at (refclk).

Greybus Control TimeSync Enable Response

The Greybus Control Protocol TimeSync Enable response contains no payload.

Greybus Control TimeSync Disable Operation

The AP Module uses this operation to inform an Interface to stop tracking frame-time. The Interface will
immediately stop tracking frame-time.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 56

Offset Field Size Value Description

0 time_sync0 8 Number Authoritative frame-time at TIME_SYNCO
8 time_syncl 8 Number Authoritative frame-time at TIME_SYNC1
16 time_sync2 8 Number Authoritative frame-time at TIME_SYNC2
24 time_sync3 8 Number Authoritative frame-time at TIME_SYNC3

Table 9.9: Control Protocol TimeSync Authoritative Request

Greybus Control TimeSync Disable Request

The Greybus Control Protocol TimeSync Disable request contains no payload.

Greybus Control TimeSync Disable Response

The Greybus Control Protocol TimeSync Disable response contains no payload.

Greybus Control TimeSync Authoritative Operation
The AP Module uses this operation to inform the Interface of the previous authoritative frame-time at each

TIME_SYNC strobe. The AP will store and forward this data to an Interface after interrogating this data
from the SVC. Unused entires in the request shall be initialized to zero.

Greybus Control TimeSync Authoritative Request
Table 9.9 defines the Greybus Control TimeSync Authoritative Request payload. The authoritative frame-

time at each TIME_SYNC strobe as reported by the SVC to the AP Module is stipulated. Unused slots in
the response shall contain zero.

Greybus Control TimeSync Authoritative Response

The Greybus Control Protocol TimeSync Authoritative Response contains no payload.

Greybus Control TimeSync Get Last Event Operation

The AP Module uses this operation to extract the last frame-time from an Interface associated with a wake
event.

Greybus Control TimeSync Get Last Event Request

The Greybus Control Protocol TimeSync Get Last Event Request contains no payload.

Greybus Control TimeSync Get Last Event Response

Table 9.1.13 defines the Greybus Control TimeSync Get Last Event Response payload. The frame-time at
the last wake event is returned.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 57

Offset Field Size Value Description

0 frame-time 8 Number frame-time at the last wake event.

Table 9.10: Control Protocol TimeSync Get Last Event Response

Offset Field Size Value Description
0 bundle_id 1 Number Bundle ID

Table 9.11: Control Protocol Bundle Version request

Greybus Control Bundle Version Operation
The AP uses this operation to retrieve the version of the Bundle Class implemented by a Bundle. The
version is represented by two 1-byte numbers, major and minor.

The version of a particular Bundle Class advertised by an Interface is the same as the version of the document
that defines the Bundle Class and its subprotocols (so for Bundle Classes defined herein, the version is 0.1).
In the future, if the Bundle Class specifications are removed from this document, the versions will become
independent of the overall Greybus Specification document.

Greybus Control Bundle Version Request

Table 9.11 defines the Greybus Control Bundle Version Request payload. The request contains the ID of the
Bundle whose Bundle Class version is to be returned.

Greybus Control Bundle Version Response

Table 9.12 defines the Greybus Control Bundle Version Response payload. The response contains two 1-byte
numbers, major and minor.

Greybus Control Mode Switch Operation

The AP can use this Operation to notify the Interface of the following:
e The Control Connection is closed
e The Interface may now alter its Bundles

Although the AP may send this request at any time, it should only do so during the “ms_enter” transition
from the ENUMERATED Interface Lifecycle State to MODE_SWITCHING, as defined in The Interface
Lifecycle. This is described in Mode Switch Enter (ENUMERATED — MODE_SWITCHING). The effect

of this Operation under other conditions is unspecified.

Note that the Greybus Control Mode Switch Operation is unidirectional and has no response. This is a
necessary consequence of the fact that the AP uses this Operation Request to inform the Interface that

Offset Field Size Value Description

0 major 1 Number Major number of the version
1 minor 1 Number Minor number of the version

Table 9.12: Control Protocol Bundle Version Response

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 58

the Control Connection is now closed, since Interfaces shall not transmit data on CPorts whose Greybus
Connections are closed.

Instead, when the Interface is ready to signal completion of its handling of this Operation, it shall do so by
setting the MAILBOX sub-state of its associated Interface State. The SVC shall detect when MAILBOX is
set and, other than in certain special circumstances, shall subsequently notify the AP using a Greybus SVC
Interface Mailbox Event Operation. This indirect mechanism allows the Interface to notify the AP when the
processing that results from a Mode Switch Request has completed.

Any timeouts limiting the duration between the receipt of the Mode Switch request and a subsequent
MAILBOX write by the Interface are implementation-defined.

Greybus Control Mode Switch Request

The Greybus Control Mode Switch Request contains no payload.

The AP shall send this request only as the final step in the procedure defined below in Control Connection
Closure for ms_enter. When the Interface receives the request, its Control Connection is now closed.

After receiving the request, the Interface shall perform any implementation-defined procedures required to
make the Control CPort usable if a Greybus Connection is later reestablished on that CPort. The Interface
may set local UniPro attributes related to that CPort to implementation-defined values as part of these
procedures.

The Interface may now release any internal resources it had acquired in response to Control Get Manifest
Size or Control Get Manifest Operations. In particular, the Interface may now stop responding to incoming
Operation requests on CPorts whose users previously had been configured to implement Greybus Protocols
other than the Control Protocol. The effects of the AP subsequently establishing Greybus Connections and
attempting to exchange data with any such CPorts are, other than the constraints defined in this version of
the Greybus Specification, not specified.

After any such procedures are complete, the Interface shall write the value MAILBOX_GREYBUS to its
Interface State’s MAILBOX attribute. Before doing so, the Interface shall ensure it can subsequently respond
to incoming Control Protocol Operation Requests if its Control Connection is reestablished. If the Interface
cannot ensure this, it shall not set the MAILBOX state as a result of receiving this request.

Greybus Control Bundle Suspend Operation

The AP may use this Operation to request a Bundle to enter the BUNDLE_SUSPENDED state in which all
Connections associated with this Bundle are closed by the AP but the Bundle’s context may be preserved
in an implementation-defined way.

The AP shall close all Connections associated with this Bundle (as described in Non-Control Connection
Closure) before sending the Bundle Suspend Request.

The Bundle shall be considered BUNDLE_SUSPENDED after the AP receives a Response indicating the
Operation has completed successfully.

Greybus Control Bundle Suspend Request

Table 9.13 defines the Greybus Control Bundle Suspend Request payload. The Request contains a one-byte
Bundle ID corresponding with the Bundle IDs received in the Manifest as described in Manifest.

The AP may send this Request to a Bundle which is in the BUNDLE_ACTIVE state. An Interface shall
send a Response containing the GB_.CONTROL_BUNDLE_PM_OK if the AP requests to suspend a Bundle

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 59

Offset Field Size Value Description
0 bundle_id 1 Number Bundle ID

Table 9.13: Control Protocol Bundle Suspend Request

Offset Field Size Value Description
0 status 1 Number Bundle PM status (one of the values defined in Table 9.21)

Table 9.14: Control Protocol Bundle Suspend Response

which is already suspended. Sending this Request to a Bundle which is in the BUNDLE_OFF state shall
result in the Bundle Suspend Response containing the GB_.CONTROL_BUNDLE_PM_NA error code.

Upon reception of this Request the Bundle indicated by the bundle_id field in the Request payload should
perform implementation-defined procedures required to enter the BUNDLE_SUSPENDED state.

Greybus Control Bundle Suspend Response

Table 9.14 defines the Greybus Control Bundle Suspend Response payload. The Response contains a one-byte
status value indicating the result of the Operation. Valid status values are defined in Table 9.21.

The AP shall verify both the Greybus return value and the Bundle PM status upon reception of the Re-
sponse. Only when the Greybus Operation returns GB_OP_SUCCESS and the Bundle Suspend Response
contains GB_.CONTROL_BUNDLE_PM_OK may the Bundle be considered suspended. Any other combina-
tion indicates an error.

The AP shall re-establish the Connections (as described in Non-Control Connection Establishment) if a
status code indicating an error was returned in the Response in which case the Bundle shall not be considered
suspended.

Greybus Control Bundle Resume Operation

The AP may use this Operation to request a specific Bundle to transition from the BUNDLE_SUSPENDED
state to the BUNDLE_ACTIVE state.

Greybus Control Bundle Resume Request

Table 9.15 defines the Greybus Control Bundle Resume Request payload. The Request contains a one-byte
Bundle ID corresponding with the Bundle IDs received in the Manifest as described in Manifest.

The AP may send this Request to a Bundle which is in the BUNDLE_SUSPENDED state. An Interface shall
send a Response containing the GB_.CONTROL_BUNDLE_PM_OK if the AP requests to resume a Bundle
which is already active. Sending this Request to a Bundle which is in the BUNDLE_OFF state shall result
in the Bundle Resume Response containing the GB_.CONTROL_BUNDLE_PM_NA error code.

Upon reception of this Request the Bundle indicated by the bundle_id field in the Request payload shall
perform implementation-defined procedures needed to exit the BUNDLE_SUSPENDED state.

Greybus Control Bundle Resume Response

Table 9.16 defines the Greybus Control Bundle Resume Response payload. The Response contains a one-byte
return value indicating the result of the Operation. Valid return values are defined in Table 9.21.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 60

Offset Field Size Value Description
0 bundle_id 1 Number Bundle ID

Table 9.15: Control Protocol Bundle Resume Request

Offset Field Size Value Description
0 status 1 Number Bundle PM status (one of the values defined in Table 9.21)

Table 9.16: Control Protocol Bundle Resume Response

The AP shall verify both the Greybus return value and the Bundle PM status upon reception of the Response.
Only when the Greybus Operation returns GB_OP_SUCCESS and the Bundle Resume Response contains
GB_CONTROL_BUNDLE_PM_OK may the Bundle be considered active. Any other combination indicates

aln error.

If the Response does not indicate an error, the AP may establish Greybus Connections on all CPorts
associated with this Bundle as described in Non-Control Connection Establishment.

Greybus Control Bundle Deactivate Operation

The AP may use this Operation to request a Bundle to enter the BUNDLE_OFF state in which all Con-
nections associated with this Bundle are closed by the AP, the underlying hardware is powered off and the
Bundle implementation-defined context is lost.

The AP shall close all Connections associated with this Bundle (as described in Non-Control Connection
Closure) before sending the Bundle Deactivate Request.

The Bundle shall be considered BUNDLE_OFF after the AP receives a Response indicating the Operation
has completed successfully.

Greybus Control Bundle Deactivate Request

Table 9.17 defines the Greybus Control Bundle Deactivate Request payload. The Request contains a one-byte
Bundle ID corresponding with the Bundle IDs received in the Manifest as described in Manifest.

The AP may send this Request to a Bundle which is in the BUNDLE_ACTIVE state. An Interface shall
send a Response containing the GB_.CONTROL_BUNDLE_PM_OK if the AP requests to deactivate a Bundle
which is already off. Sending this Request to a Bundle which is in the BUNDLE_SUSPENDED state shall
result in the Bundle Deactivate Response containing the GB_.CONTROL_BUNDLE_PM_NA error code.

Upon reception of this Request the Bundle indicated by the bundle_id field in the Request payload should
perform implementation-defined procedures required to enter the BUNDLE_OFF state.

Offset Field Size Value Description
0 bundle_id 1 Number Bundle ID

Table 9.17: Control Protocol Bundle Deactivate Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 61

Offset Field Size Value Description
0 status 1 Number Bundle PM status (one of the values defined in Table 9.21)

Table 9.18: Control Protocol Bundle Deactivate Response

Offset Field Size Value Description
0 bundle_id 1 Number Bundle ID

Table 9.19: Control Protocol Bundle Activate Request

Greybus Control Bundle Deactivate Response

Table 9.18 defines the Greybus Control Bundle Deactivate Response payload. The Response contains a
one-byte status value indicating the result of the Operation. Valid status values are defined in Table 9.21.

The AP shall verify both the Greybus return value and the Bundle PM status upon reception of the Response.
Only when the Greybus Operation returns GB_OP_SUCCESS and the Bundle Deactivate Response contains
GB_CONTROL_BUNDLE_PM_OK may the Bundle be considered powered off. Any other combination
indicates an error.

The AP shall re-establish the Connections (as described in Non-Control Connection Establishment) if a
status code indicating an error was returned in the Response in which case the Bundle shall not be considered
powered off.

Greybus Control Bundle Activate Operation

The AP may use this Operation to request a specific Bundle to transition from the BUNDLE_OFF state to
the BUNDLE_ACTIVE state.

Greybus Control Bundle Activate Request

Table 9.19 defines the Greybus Control Bundle Activate Request payload. The Request contains a one-byte
Bundle ID corresponding with the Bundle IDs received in the Manifest as described in Manifest.

The AP may send this Request to a Bundle which is in the BUNDLE_OFF state. An Interface shall send a
Response containing the GB_.CONTROL_BUNDLE_PM_OK if the AP requests to activate a Bundle which is
already active. Sending this Request to a Bundle which is in the BUNDLE_SUSPENDED state shall result
in the Bundle Activate Response containing the GB_.CONTROL_BUNDLE_PM_NA error code.

Upon reception of this Request the Bundle indicated by the bundle_id field in the Request payload shall
perform implementation-defined procedures needed to exit the BUNDLE_OFF state.

Greybus Control Bundle Activate Response

Table 9.20 defines the Greybus Control Bundle Activate Response payload. The Response contains a one-
byte return value indicating the result of the Operation. Valid return values are defined in Table 9.21.

The AP shall verify both the Greybus return value and the Bundle PM status upon reception of the Response.
Only when the Greybus Operation returns GB_OP_SUCCESS and the Bundle Resume Response contains
GB_CONTROL_BUNDLE_PM_OK may the Bundle be considered active. Any other combination indicates

aln error.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 62

Offset Field Size Value Description
0 status 1 Number Bundle PM status (one of the values defined in Table 9.21)

Table 9.20: Control Protocol Bundle Activate Response

Mode Value Description

GB_CONTROL_BUNDLE_PM_OK 0x00 Bundle power state change was successful

GB_CONTROL BUNDLE PM INVAL 0x01 Invalid Bundle ID

GB_.CONTROL_BUNDLE_PM_BUSY 0x02 Request rejected due to concurrent operations
GB_.CONTROL_BUNDLE_PM_FAIL 0x03 Bundle power state change failed due to an internal error
GB_.CONTROL_BUNDLE_PM_NA 0x04 Operation not applicable e.g. requested suspend for an already suspended Bundle

Table 9.21: Control Protocol Bundle Power Management Status Values

If the Response does not indicate an error, the AP may establish Greybus Connections on all CPorts
associated with this Bundle as described in Non-Control Connection Establishment.

Greybus Control Interface Suspend Prepare Operation
The AP uses this Operation during the Suspend (ENUMERATED — SUSPENDED) transition to request
the Interface to enter a low-power mode after it detects a subsequent UniPro link hibernation.

In this mode, some internal context may be preserved in an implementation-defined way, allowing for a quick
transition back to the ENUMERATED state.

The Interface Suspend Prepare Request shall not be sent by the AP unless all Bundles associated with this
Interface are in the BUNDLE_SUSPENDED or BUNDLE_OFF state.

There is no Control Interface Resume Prepare Operation - the Resume Operation is handled entirely by the
Greybus SVC Interface Resume Operation.

Greybus Control Interface Suspend Prepare Request

The Control Interface Suspend Prepare Request has no payload.

Upon reception of this Request the Interface shall verify that it is not already being suspended or powered
down, that all Bundles associated with it are in the BUNDLE_SUSPENDED or BUNDLE_OFF state and
that it is subsequently able to detect if its UniPort-M enters the Hibernate state.

If all above conditions are met, the Interface shall respond with the GB_.CONTROL_INTF_PM_OK status
and ensure that if Hibernate entry occurs, it shall proceed with the Suspend process defined in Suspend
(ENUMERATED — SUSPENDED).

The Interface shall still continue to respond to incoming Control Requests when waiting for the UniPort-M
Hibernate.

Greybus Control Interface Suspend Prepare Response
Table 9.22 defines the Greybus Control Interface Suspend Response payload. The Response contains a
one-byte return value indicating the result of the Operation. Valid return values are defined in Table 9.24.

The AP shall verify both the Greybus return value and the Bundle PM status upon reception of the Response.
Only when the Greybus Operation returns GB_OP_SUCCESS and the Interface Suspend Response contains

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 63

Offset Field Size Value Description

0 status 1 Number Interface PM status (one of the values in Table 9.24)

Table 9.22: Control Protocol Interface Suspend Response

GB_CONTROL_INTF_PM_OK may the AP continue suspending the Interface. Any other combination
indicates an error.

If the returned PM status is different than GB_.CONTROL_INTF_PM_OK, the Interface cannot be suspended
at this time. If the returned status code is GB_.CONTROL_INTF_PM_BUSY, the Interface is already being
suspended or powered down in which case the AP shall not retry.

If the status code is GB_.CONTROL_INTF_PM_NA, one or more Bundles are still in the BUNDLE_ACTIVE
state in which case the AP may retry after making sure all Bundles are suspended or deactivated or abandon
the Suspend Operation. If the Operations still fails after a finite, implementation-defined number of retries,
then the Suspend (ENUMERATED — SUSPENDED) procedure shall be considered as failed.

Greybus Control Interface Deactivate Prepare Operation

The AP uses this Operation during the Power Down (ENUMERATED — OFF) transition to request the
bridge to power down after it detects a subsequent UniPro link hibernation (see Power Down (ENUMER-
ATED — OFF)).

The Interface Deactivate Prepare Request shall not be sent by the AP unless all Bundles associated with
this Interface are in the BUNDLE_OFF state.

There is no Control Interface Activate Operation - the Activate Operation is handled by the SVC using the
Greybus SVC Interface Activate Operation.

Greybus Control Interface Deactivate Prepare Request

The Control Interface Deactivate Prepare Request has no payload.

Upon reception of this Request the Interface shall verify that it is not already being powered down or
suspended, that all Bundles associated with it are in BUNDLE_OFF state and that it is subsequently able
to detect if its UniPort-M enters the Hibernate state.

If all above conditions are met, the Interface shall respond with the GB_.CONTROL_INTF_PM_OK status
and ensure that if Hibernate entry occurs, it shall proceed with the Power Down process defined in Power
Douwn (ENUMERATED — OFF).

The Interface shall still continue to respond to incoming Control Requests when waiting for the UniPort-M
Hibernate.

Greybus Control Interface Deactivate Prepare Response

Table 9.23 defines the Greybus Control Interface Deactivate Prepare Response payload. The Response
contains a one-byte return value indicating the result of the Operation. Valid return values are defined in
Table 9.24.

The AP shall verify both the Greybus return value and the Bundle PM status upon reception of the Response.
Only when the Greybus Operation returns GB_OP_SUCCESS and the Interface Deactivate Prepare Response
contains GB_.CONTROL_INTF_PM_OK may the AP commence with powering down the Interface. Any

other combination indicates an error.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 64

Offset Field Size Value Description

0 status 1 Number Interface PM status (one of the values in Table 9.24)

Table 9.23: Control Protocol Interface Deactivate Prepare Response

Mode Value Description

GB_CONTROL_INTF_PM_OK 0x00 The AP can continue with the Interface power mode change
GB_CONTROL_INTF_PM_BUSY 0x01 Request rejected due to concurrent operations
GB_.CONTROL_INTF_PM_NA 0x02 Some bundles associated with this Interface are in a wrong state

Table 9.24: Control Protocol Interface Power Management Return Values

If the returned PM status is different than GB_.CONTROL_INTF_PM_OK, the Interface cannot be powered
down at this time. If the returned status code is GB_.CONTROL_INTF_PM_BUSY, the Interface is already
being suspended or powered down in which case the AP shall not retry.

If the status code is GB_.CONTROL_INTF_PM_NA, one or more Bundles are still in the BUNDLE_ACTIVE
or BUNDLE_SUSPENDED state in which case the AP may retry after making sure all Bundles are suspended
or deactivated or abandon the Deactivate Operation. If the Operation still fails after a finite, implementation-
defined number of retries, then the AP may continue the Power Down (ENUMERATED — OFF) procedure,
which will result in a forceful power down.

Greybus Control Interface Hibernate Abort Operation

The AP may use this Operation to abort a previous Control Interface Suspend or Control Interface Deactivate
Prepare Operation.

Greybus Control Interface Hibernate Abort Request

The Greybus Control Interface Hibernate Abort Request has no payload.

The AP shall not send this request to an Interface which is not currently being suspended or powered down.
The AP shall also not send this Request to an Interface for which it already requested the SVC to hibernate
the UniPro link.

Upon reception of this Request the Interface shall stop waiting for the UniPort-M Hibernate and undo any
implementation-defined procedures it performed in order to prepare for the power state transition.

This Operation halts both the Suspend and Power Down process.
Greybus Control Interface Hibernate Abort Response

The Greybus Control Interface Hibernate Abort Response has no payload.

Upon reception of this Response the AP may re-establish any Non-Control Connections it may have closed
before issuing the Suspend or Deactivate Request.

SVC Protocol

The AP Module is required to provide a CPort that uses the SVC Protocol on an Interface. The AP Module
does not have a control connection, but instead implements the SVC protocol using the reserved Control

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 65

CPort ID. At initial power-on, the SVC sets up a UniPro connection from one of its CPorts to the AP
Module Interface’s SVC CPort.

The SVC has direct control over and responsibility for the Frame, including detecting when modules are
present, configuring the UniPro switch, powering module Interfaces, providing the frame-time and attaching
and detaching modules. The AP Module controls the Frame through operations sent over the SVC connec-
tion. And the SVC informs the AP Module about Frame events (such as the presence of a new module, or
notification of changing power conditions).

Conceptually, the operations in the Greybus SVC Protocol are:

int

int

int

int

int

int

int

int

int

int

int

int

int

cport_shutdown (u8 phase) ;
See Common Greybus Protocol CPort Shutdown Operation.

version(u8 offer major, u8 offer minor, u8 *major, u8 *minor);
Refer to Common Greybus Protocol Version Operation.

svc_hello(ul6é frame generation, ul6 frame_variant, u8 intf_id);

This Operation is used at initial power-on, sent by the SVC to inform the AP of its environment.
After version negotiation, it is the next operation initiated by the SVC sent at initialization. The
descriptor describes details of the Frame’s environment such as number, placement, and features of
interface blocks, etc.

dme_peer_get(u8 intf_id, ul6 attribute, ul6 selector, ul6 *result_code, u32 *value);
This Operation is used by the AP to direct the SVC to perform a UniPro DME peer get on its behalf.
The SVC returns the value of the DME attribute requested.

dme _peer _set(u8 intf_id, ul6 attribute, ul6 selector, u32 value, ul6 *result_code);
This Operation is used by the AP to direct the SVC to perform a UniPro DME peer set on its behalf.

route_create(u8 intfi_id, u8 devl_id, u8 intf2_id, u8 dev2.id);
This Operation is used by the AP to direct the SVC to create a route for UniPro traffic between two
interfaces.

route_destroy(u8 intfl_id, u8 intf2.id);
This Operation is used by the AP to direct the SVC to destroy a route for UniPro traffic between two
interfaces.

intf_device_id(u8 intf_id, u8 device_id);
This operation is used by the AP Module to request that the SVC associate a Device ID with the given
Interface.

intf_hotplug(u8 intf_id, u32 ddbli.mfr_id, u32 ddbll_prod.-id, u32 ara vend id, u32 ara_prod._id, u64 se
This operation is deprecated, and should not be used in new designs. See Boot (ATTACHED —
ACTIVATED) and Mode Switch Exit (MODE_SWITCHING — ENUMERATED).

intf hotunplug(u8 intf_id);
This operation is deprecated, and should not be used in new designs. See the Greybus SVC Module
Removed Operation.

intf_reset(u8 intf_id);
The SVC sends this to inform the AP Module that an active Interface needs to be reset. This might
happen when the SVC has detected an error on the link, for example.

intf_set_power mode(u8 intf_id, struct unipro_link cfg *cfg);
The AP sends this to the SVC to request that a UniPro power mode change be applied to an Interface.

connection create(u8 intfl_id, ul6 cporti_id, u8 intf2_id, ul6 cport2.id, u8 tc, u8 flags);
The AP Module uses this operation to request the SVC set up a UniPro connection between CPorts
on two Interfaces.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 66

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

connection_destroy(u8 intfil_id, ul6 cportl_id, u8 intf2_.id, ul6 cport2.id);
The AP Module uses this operation to request the SVC tear down a previously created connection.

timesync_enable(u8 count, u64 frame time, u32 strobe_delay, u32 refclk);
The AP Module uses this operation to request the SVC to enable frame-time tracking.

timesync_disable(void);
The AP Module uses this operation to request the SVC stop tracking frame-time. The SVC will
immediately stop tracking frame-time.

timesync_authoritative(void) ;
The AP Module uses this operation to request the SVC to send the authoritative frame-time at each
TIME_SYNC strobe.

timesync_wake_pins_acquire(u32 strobe_mask);
The AP Module uses this operation to request the SVC to take control of a bit-mask of wake lines
associated with the bit-mask of Interface IDs specified by the strobe_mask parameter. This is done to
establish an initial state on the relevant wake lines prior to generating timesync related events.

timesync_wake_pins_release(void) ;
The AP Module uses this operation to request the SVC to release any wake lines currently reserved
for time-sync operations.

timesync_ping(u64 *frame_time) ;

The AP Module uses this operation to request the SVC to generate a single pulse on a bit-mask of
wake lines communicated to SVC by a prior timesync_wake_pins_acquire() operation. SVC will return
the authoritative frame-time of the timesync_ping() to the AP Module in the response phase of the
operation.

module_eject(u8 primary_intf_id);
The AP Module uses this operation to request the SVC to perform the necessary action to eject a
Module having the given primary interface id.

ping(void);
An exchange of Messages with empty Greybus payloads.

pwrmon_rail_count_get(u8 *rail_count);
The AP uses this operation to retrieve the number of power rails for which power measurements are
available.

pwrmon_rail names_get (u8 **rails_buf);
The AP uses this operation to retrieve the list of names of all supported power rails.

pwrmon_sample_get (u8 rail_id, u8 type, u8 *result, u32 *measurement);
The AP uses this operation to retrieve a single measurement (current, voltage or power) for a single
rail.

pwrmon_intf _sample get(u8 intf_id, u8 type, u8 *result, u32 *measurement);
The AP uses this operation to retrieve a single measurement (current, voltage or power) for the specified
interface.

power_down (void) ;
The AP uses this operation to power down the SVC and all the devices it controls.

module_inserted(u8 primary_intf_id, u8 intf_count, ul6 flags);
The SVC uses this operation to notify the AP Module of the presence of a newly inserted Module. It
sends the request after it has determined the size and position of the Module in the Frame.

module_removed(u8 primary_intf_id);
The SVC uses this operation to notify the AP Module that a Module that was previously the subject
of a Greybus SVC Module Inserted Operation has been removed.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 67

int intf_vsys_enable(u8 intf_id, u8 *result);
The AP uses this Operation to request the SVC to set Interface State intf_id’s V_.SYS to V_.SYS_ON.

int intf _vsys_disable(u8 intf_id, u8 *result);
The AP uses this Operation to request the SVC to set Interface State intf_id’s V_.SYS to V_.SYS_OFF.

int intf_refclk_enable(u8 intf_id, u8 *result);
The AP uses this Operation to request the SVC to set Interface State intf_id’s REFCLK to REF-
CLK_ON.

int intf _refclk_disable(u8 intf_id, u8 *result);
The AP uses this Operation to request the SVC to set Interface State intf.id’s REFCLK to REF-
CLK_OFF.

int intf unipro_enable(u8 intf_id, u8 *result);
The AP uses this Operation to request the SVC to set Interface State intfid’s UNIPRO to
UPRO_DOWN.

int intf unipro_disable(u8 intf_id, u8 *result);
The AP uses this Operation to request the SVC to set Interface State intf_id’s UNIPRO to UPRO_OFF.

int intf_activate(u8 intf_id, u8 *intf_type);
The AP uses this Operation to request that the SVC attempt to activate an Interface for communication
via Greybus.

int intf _resume(u8 intf_id);
The AP uses this Operation to request that the SVC attempt to resume an Interface which is in a low
power mode into a state where it can again communicate via Greybus.

int intf mailbox_event(u8 intf_id, ul6 result_code, u32 mailbox);
The SVC uses this Operation to inform the AP that an Interface State’s MAILBOX has changed value.

int intf_oops(u8 intf_id, u8 reason);
The SVC uses this Operation to inform the AP that an Interface has experienced a fatal error.

int intf_vchg enable(u8 intf_id, u8 *result);
The AP uses this Operation to request the SVC to set V_.CHG sub-state of Interface States for intf_id
to V_.CHG_ON.

int intf _vchg disable(u8 intf_id, u8 *result);
The AP uses this Operation to request the SVC to set V_.CHG sub-state of Interface States for intf_id
to V.CHG_OFF.

int intf_set_vsys_power_limit (u8intf_id, ul6mw)
The AP Module uses this Operation to set a limit for the power delivered to an Interface.

Greybus SVC Operations
All SVC Operations are contained within a Greybus SVC request message. Every SVC request results in a
matching response. The request and response messages for each SVC Operation are defined below.

Table 9.25 defines the Greybus SVC Protocol Operation types and their values. Both the request type and
response type values are shown.

Greybus SVC Protocol Operation Status

The SVC Protocol defines a common set of status values which are embedded in some Operation Response
payload fields, and are defined in Table 9.26. These status values are used to signal errors specific to SVC
Protocol.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

SVC Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80
Protocol Version 0x01 0x81
SVC Hello 0x02 0x82
Interface Device ID 0x03 0x83
Interface Hotplug (deprecated) 0x04 0x84
Interface Hot Unplug (deprecated) 0x05 0x85
Interface Reset 0x06 0x86
Connection Create 0x07 0x87
Connection Destroy 0x08 0x88
DME Peer Get 0x09 0x89
DME Peer Set 0x0a 0x8a
Route Create 0x0b 0x8b
Route Destroy 0x0c 0x8¢
TimeSync Enable 0x0d 0x8d
TimeSync Disable 0x0e 0x8e
TimeSync Authoritative 0x0f 0x8f
Interface Set Power Mode 0x10 0x90
Module Eject 0x11 0x91
Reserved 0x12 N/A
Ping 0x13 0x93
Power Monitor Get Rail Count 0x14 0x94
Power Monitor Get Rail Names 0x15 0x95
Power Monitor Get Sample 0x16 0x96
Power Monitor Interface Get Sample 0x17 0x97
TimeSync Wake Pins Acquire 0x18 0x98
TimeSync Wake Pins Release 0x19 0x99
TimeSync Ping Oxla 0x9a
Power Down Ox1d 0x9d
Reserved Oxle 0x9e
Module Inserted Ox1f 0x9f
Module Removed 0x20 0xa0
Interface V_SYS Enable 0x21 Oxal
Interface V_SYS Disable 0x22 Oxa2
Interface REFCLK Enable 0x23 0xa3
Interface REFCLK Disable 0x24 Oxa4
Interface UNIPRO Enable 0x25 0xab
Interface UNIPRO Disable 0x26 Oxab
Interface Activate 0x27 0xa7
Interface Resume 0x28 0xa8
Interface Mailbox Event 0x29 0xa9
Interface Oops 0x2a Oxaa
Interface V_.CHG Enable 0x2b Oxab
Interface V_CHG Disable 0x2c Oxac
Interface Set V_SYS Power Limit 0x2d Oxad
Reserved 0x30 0xb0
Reserved 0x31 N/A
Reserved 0x32 0xb2
(all other values reserved) 0x33..0x7e 0xb3..0xfe
Invalid 0x7f Oxff

Table 9.25: SVC Operation Types

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 69

Status Value Meaning

GB_SVC_OP_SUCCESS 0x00 SVC Protocol Operation completed successfully
GB_SVC_.OP_UNKNOWN_ERROR 0x01 Unknown error occured
GB_SVC_INTF_.NOT_DETECTED 0x02 DETECT is not DETECT_ACTIVE
GB_SVC_INTF_NO_UPRO_LINK 0x03 UNIPRO is not UPRO_UP
GB_SVC_INTF_UPRO_NOT_DOWN 0x04 UNIPRO is not UPRO_.DOWN
GB_SVC_INTF_UPRO_NOT_HIBERNATED 0x05 UNIPRO is not UPRO_HIBERNATE
GB_SVC_.INTF_NO_V_SYS 0x06 V_SYS is not V.SYS_ON
GB_SVC_.INTF_V_CHG 0x07 V_CHG is V.CHG_ON
GB_SVC_INTF_WAKE BUSY 0x08 WAKE is not WAKE_UNSET
GB_SVC_INTF_NO_REFCLK 0x09 REFCLK is not REFCLK_ON
GB_SVC_INTF_RELEASING 0x0a RELEASE is RELEASE_ASSERTED
GB_SVC_INTF_NO_ORDER 0x0b ORDER is ORDER_.UNKNOWN
GB_SVC_INTF_MBOX_SET 0x0c MAILBOX is not MAILBOX_NONE
GB_SVC_INTF_BAD_MBOX 0x0d Interface set MAILBOX to illegal value
GB_SVC_INTF_OP_TIMEOUT 0x0e SVC Interface operation timed out
GB_SVC_PWRMON_OP _NOT_PRESENT 0x0f Measurable power rails are not present
GB_SVC_PWRMON_ERROR 0x10 Error occurred while configuring power rail
Reserved 0x11 to Oxff Reserved for future use

Table 9.26: SVC Protocol Status Values

Greybus SVC CPort Shutdown Operation

The Greybus SVC CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the SVC Protocol.

Greybus SVC Protocol Version Operation
The Greybus SVC Protocol Version Operation is the Common Greybus Protocol Version Operation for the
SVC Protocol.

Greybus implementations adhering to the Protocol specified herein shall specify the value 0 for the ver-
sion_major and 1 for the version_minor fields found in this Operation’s request and response messages.

Greybus SVC Hello Operation

The Greybus SVC Hello Operation is sent by the SVC to the AP at power-on to inform the AP of its
environment.

Greybus SVC Hello Request

Table 9.27 defines the Greybus SVC Hello Request payload. This Operation is used at initial power-on, sent
by the SVC to inform the AP of its environment. After version negotiation, it is the next Operation sent
by the SVC sent at initialization. The descriptor describes details of the Frame environment and location
of the AP interface.

Before sending the SVC Hello Request, the SVC shall ensure that all Interface States in the Greybus System
are either ATTACHED or DETACHED.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 70

Offset Field Size Value Description
0 frame_variant 2 Number Frame Variant within the Generation
2 intf_id 1 Number AP Interface ID

Table 9.27: SVC Protocol SVC Hello Request

Offset Field Size Value Description

0 intf_id 1 Number Interface ID
1 attr 2 Number UniPro DME Attribute
3 selector 2 Number UniPro DME selector

Table 9.28: SVC Protocol DME Peer Get Request

Greybus SVC Hello Response

The Greybus SVC Hello response contains no payload.

During the initialization of a Greybus System, after receiving a successful SVC Hello Response from the AP,
the SVC shall attempt to exchange a sequence of Module Inserted Operations with the AP.

Greybus SVC DME Peer Get Operation

The Greybus SVC DME Peer Get Operation is sent by the AP to the SVC to direct the SVC to perform a
UniPro DME Peer Get on an Interface.

Greybus SVC DME Peer Get Request

Table 9.28 defines the Greybus SVC DME Peer Get Request payload. This request may be sent by the AP
to query specific attributes located in the UniPro stack of an Interface. The SVC returns the value of the
DME attribute requested.

Upon receiving the request, the SVC shall check that the Interface State with ID intf id has DETECT equal
to DETECT_ACTIVE, and UNIPRO equal to UPRO_UP.

If these conditions do not hold, the SVC cannot satisfy the request, and shall send a response signaling
an error as described below. The SVC shall take no further action related to such an unsatisfiable request
beyond sending the response.

Otherwise, the SVC shall attempt to retrieve the value of the UniPro DME attribute with Attribute ID
given by the attr field, with selector index given by the selector field.

Greybus SVC DME Peer Get Response

Table 9.29 defines the Greybus SVC DME Peer Get Operation Response payload. If the Greybus Operation
Status is not GB_OP_SUCCESS, the values of the response payload fields are undefined and shall be ignored.

If the status field in the Operation Response payload is not GB_.SVC_OP_SUCCESS, values in all other
fields of the Operation Response payload are undefined and shall be ignored. The SVC shall return the
following errors in the status field of the Operation Response payload depending on the sub-state values of
the Interface States with Interface ID given by intf_id in the request payload:

o If DETECT is not DETECT_ACTIVE, the response shall have status
GB_SVC_INTF_NOT_DETECTED.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 71

Offset Field Size Value Description

0 status 1 Number Greybus SVC Protocol Operation Status

1 result_code 2 Number UniPro DME Peer Get ConfigResultCode

3 attr_value 4 Number UniPro DME Peer Get DME Attribute value

Table 9.29: SVC Protocol DME Peer Get Response

Offset Field Size Value Description

0 intf_id 1 Number Interface ID

attr 2 Number UniPro DME Attribute

selector 2 Number UniPro DME selector

value 4 Number UniPro DME Attribute value to set

[SOV

Table 9.30: SVC Protocol DME Peer Set Request

e If UNIPRO is not UPRO_UP, the response shall have status GB_.SVC_INTF_NO_UPRO_LINK.

If during the handling of the request, the SVC is unable to exchange the UniPro frames required to retrieve
a ConfigResultCode or attribute value from the peer identified in the request, the status field in Operation
Response payload shall be GB_.SVC_OP_UNKNOWN_ERROR. When this occurs, the value of the UNIPRO
sub-state for the Interface identified in the request is unpredictable.

If the Greybus Operation Status is GB_OP_SUCCESS and the status field in Operation Response payload is
GB_SVC_OP_SUCCESS, the Greybus DME Peer Get response contains the ConfigResultCode as defined in
the UniPro specification, as well as the value of the attribute, if applicable.

Greybus SVC DME Peer Set Operation

The Greybus SVC DME Peer Set Operation is sent by the AP to the SVC to direct the SVC to perform a
UniPro DME_PEER_SET on an Interface.

Greybus SVC DME Peer Set Request

Table 9.30 defines the Greybus SVC DME Peer Set Request payload. This request may be sent by the AP
to set specific attributes located in the UniPro stack of an Interface.

Upon receiving the request, the SVC shall check that the Interface State with ID intf_id has DETECT equal
to DETECT_ACTIVE, and UNIPRO equal to UPRO_UP.

If these conditions do not hold, the SVC cannot satisfy the request, and shall send a response signaling
an error as described below. The SVC shall take no further action related to such an unsatisfiable request
beyond sending the response.

Otherwise, the SVC shall attempt to set the value of the UniPro DME attribute with Attribute ID given by
the attr field, with selector index given by the selector field, to the value given by the value field.

Greybus SVC DME Peer Set Response
Table 9.31 defines the Greybus SVC DME Peer Set Response payload. If the Greybus Operation Status is
not GB_OP_SUCCESS, the values of the response payload fields are undefined and shall be ignored.

If the status field in the Operation Response payload is not GB_.SVC_OP_SUCCESS, values in all other
fields of the Operation Response payload are undefined and shall be ignored. The SVC shall return the

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 72

Offset Field Size Value Description
0 status 1 Number Greybus SVC' Protocol Operation Status
1 result_code 2 Number UniPro DME Peer Set ConfigResultCode

Table 9.31: SVC Protocol DME Peer Set Response

Offset Field Size Value Description

0 intfl_id 1 Number First Interface

1 devl._id 1 Number First Interface Device ID

2 intf2_id 1 Number Second Interface

3 dev2_id 1 Number Second Interface Device ID

Table 9.32: SVC Protocol Route Create Request

following errors in the status field of the Operation Response payload depending on the sub-state values of
the Interface States with Interface ID given by intf.id in the request payload:

o If DETECT is not, DETECT_ACTIVE, the response shall have status
GB_SVC_INTF_.NOT_DETECTED.

e If UNIPRO is not UPRO_UP, the response shall have status GB_.SVC_INTF_NO_UPRO_LINK.

If during the handling of the request, the SVC is unable to exchange the UniPro frames required to retrieve
a ConfigResultCode or attribute value from the peer identified in the request, the status field in Operation
Response payload shall be GB_.SVC_OP_UNKNOWN_ERROR. When this occurs, the value of the UNIPRO
sub-state for the Interface identified in the request is unpredictable.

If the Greybus Operation Status is GB_OP_SUCCESS and the status field in Operation Response payload
is GB_.SVC_OP_SUCCESS, the Greybus DME Peer Set response contains the ConfigResultCode for the
attribute write as defined in the UniPro specification.

Greybus SVC Route Create Operation

The Greybus SVC Protocol Route Create Operation allows the AP Module to request a route be established
for UniPro traffic between two Interfaces.

While handling this Operation request, the SVC may attempt to create a route within the Frame. This is
a necessary condition for UniPro Messages to subsequently be exchanged between the UniPorts attached to
the Interface Blocks identified by the request.

However, creation of a route is not a sufficient condition for Message exchange. In order to exchange UniPro
Messages between the two Interfaces, a successful Greybus SVC Connection Create Operation between the
two interfaces is required as well. Additional Operations are required to establish a Greybus Connection, as
described in Connection Management.

Greybus SVC Route Create Request

Table 9.32 defines the Greybus SVC Route Create request payload. The request supplies the Interface IDs
and Device IDs of two Interfaces to be connected.

Upon receiving the request, the SVC shall check that the Interface States with IDs intfl_id and intf2_id have
DETECT equal to DETECT_ACTIVE, and UNIPRO equal to UPRO_UP.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 73

Offset Field Size Value Description
0 status 1 Number Greybus SVC Protocol Operation Status

Table 9.33: SVC Protocol Route Create Response

Offset Field Size Value Description

0 intfl_id 1 Number First Interface
1 intf2_id 1 Number Second Interface

Table 9.34: SVC Protocol Route Destroy Request

If these conditions do not hold, the SVC cannot satisfy the request, and shall send a response signaling
an error as described below. The SVC shall take no further action related to such an unsatisfiable request
beyond sending the response.

Otherwise, the SVC shall attempt to create the specified route.

Greybus SVC Route Create Response

Table 9.33 defines the Greybus SVC Route Create Response payload. If the Greybus Operation Status is not
GB_OP_SUCCESS, the value of the Response payload field is undefined and shall be ignored.

The SVC shall return the following errors in the status field of the Operation Response payload depending
on the sub-state values of the Interface States with Interface ID given by intfl_id and intf2_id in the Request
payload.

e If DETECT is not DETECT_ACTIVE in both Interface States, the response shall have status
GB_SVC_INTF_NOT_DETECTED.

e If DETECT is DETECT_ACTIVE in both Interface States, and UNIPRO is not UPRO_UP in both
Interface States, the response shall have status GB_.SVC_INTF _NO_UPRO_LINK.

Regardless of the Response status value, the Greybus SVC Route Create Operation shall have no effect on
either the UNIPRO sub-state of either Interface identified by the request, or the value of any of the UniPro
DME attributes for the Interfaces identified by the request.

Greybus SVC Route Destroy Operation

The Greybus SVC Protocol Route Destroy Operation allows the AP Module to request a route be torn down
for UniPro traffic between two Interfaces.

While handling this Operation, the SVC may tear down a previously created route within the Frame. This is
a sufficient condition for preventing subsequent UniPro Messages from being exchanged between the UniPorts
attached to the Interface Blocks identified by the request; however, additional Operations are required to
completely release resources acquired during Greybus Connection establishment, as described in Connection
Management.

Greybus SVC Route Destroy Request

Table 9.34 defines the Greybus SVC Route Destroy request payload. The request supplies the Interface IDs
of two Interfaces between which the route should be destroyed.

Upon receiving the request, the SVC shall attempt to destroy the specified route.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 74

Offset Field Size Value Description
0 intf_id 1 Number Interface ID whose Device ID is being assigned
1 device_id 1 Number 5-bit UniPro Device ID for Interface

Table 9.35: SVC Protocol Device ID Request

Greybus SVC Route Destroy Response

The Greybus SVC Protocol Route Destroy response contains no payload.

Regardless of the response status value, the Greybus SVC Route Destroy Operation shall have no effect on
either the UNIPRO sub-state of either Interface identified by the request, or the value of any of the UniPro
DME attributes for the Interfaces identified by the request.

Greybus SVC Interface Device ID Operation

The Greybus SVC Interface Device ID Operation is used by the AP Module to request the SVC associate a
device id with an Interface. The device id is used by the UniPro switch to determine how packets should be
routed through the network. The AP Module is responsible for managing the mapping between Interfaces
and UniPro device ids.

Greybus supports 5-bit UniPro Device IDs. Device ID 0 and 1 are reserved for the SVC and primary AP
Interface respectively.

The AP shall manage Device IDs of any attached Modules using this operation during Connection Manage-
ment.

Greybus SVC Interface Device ID Request

Table 9.35 defines the Greybus SVC Interface Device ID Request payload.

The Greybus SVC Interface Device ID Request shall only be sent by the AP Module to the SVC. It supplies
the 5-bit Device ID that the SVC will associate with the indicated Interface. The AP Module can remove
the association of an Interface with a Device ID by setting the device_id field in the request payload to zero.
The AP shall not assign a (non-zero) Device ID to an Interface that the SVC has already associated with
an Interface, and shall not clear the Device ID of an Interface that has no Device ID assigned.

Note that assigning a Device ID to an Interface does not cause the SVC to set up any routes for that Device
ID. Routes are set up only as needed when a connection involving a Device ID are created, and removed
when an Interface’s last connection is destroyed.

Upon receiving the request, the SVC shall check that the Interface State with ID intf_id has DETECT equal
to DETECT_ACTIVE, and UNIPRO equal to UPRO_UP.

If these conditions do not hold, the SVC cannot satisfy the request, and shall send a response signaling
an error as described below. The SVC shall take no further action related to such an unsatisfiable request
beyond sending the response.

Otherwise, the SVC shall attempt to set the UniPro Device ID of the UniPort connected to corresponding
Interface Block to device_id, and to mark the UniPro Device ID as valid. This sequence may change the
values of UniPro DME attributes on the UniPort the Interface Block identified in the request.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 75

Offset Field Size Value Description
0 status 1 Number Greybus SVC Protocol Operation Status

Table 9.36: SVC Protocol Interface Device Id Response

Greybus SVC Interface Device ID Response

Table 9.36 defines the Greybus SVC Interface Device ID Response payload. If the Response message header
has Greybus Operation Status not equal to GB_OP_SUCCESS, the value of the Response payload field is
undefined and shall be ignored.

The SVC shall return the following errors in the status field of the Operation Response payload depending
on the sub-state values of the Interface State with Interface ID given by intf_id in the Request payload.

o If DETECT is not DETECT_ACTIVE, the response shall have status
GB_SVC_INTF_NOT_DETECTED.

o If UNIPRO is not UPRO_UP, the response shall have status GB_.SVC_INTF_NO_UPRO_LINK.

If the SVC fails to set the Device ID due to an error on a UniPro link, the status field in the Operation
Response payload shall be GB_.SVC_OP_UNKNOWN_ERROR. When this occurs, the value of the Device
1D, as well as its validity, are unpredictable, as is the value of the UNIPRO sub-state of the Interface State
with Interface ID given by the intf_id in Request payload.

Greybus SVC Interface Hotplug Operation (Deprecated)

Note: This operation is deprecated, and should not be used in new designs.

Boot (ATTACHED — ACTIVATED) and Mode Switch Exit (MODE_SWITCHING — ENUMERATED)
should be used for any new designs.

When the SVC first detects that a module is present on an Interface, it sends an Interface Hotplug Request
to the AP Module. The hotplug request is sent after the Interface’s UniPro link has been established. The
request includes some additional information known by the SVC about the discovered Interface (such as the
vendor and product ID).

Greybus SVC Interface Hotplug Request

Table 9.37 defines the Greybus SVC Interface Hotplug Request payload.

The Greybus SVC hotplug request is sent only by the SVC to the AP Module. The Interface ID informs the
AP Module which Interface now has a module present, and supplies information (such as the vendor and
model numbers) the SVC knows about the Interface. Exactly one hotplug event shall be sent by the SVC
for a module when it has been inserted (or if it was found to be present at initial power-on).

Greybus SVC Interface Hotplug Response

The Greybus SVC hotplug response message contains no payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 76

Offset Field Size Value Description

0 intf_id 1 Number Interface that now has a module present

1 ddbll_mfr_id 4 Number UniPro DDB Level 1 Manufacturer ID

5 ddbll_prod_id 4 Number UniPro DDB Level 1 Product ID

9 ara_vend_id 4 Number Ara Vendor ID

13 ara_prod_id 4 Number Ara Product ID

17 serial number 8 Number Module serial number that uniquely identifies modules with same ARA VID/PIDs

Table 9.37: SVC Protocol Hotplug Request

Offset Field Size Value Description

0 intf_id 1 Number Interface that no longer has an attached module

Table 9.38: SVC Protocol Hot Unplug Request

Greybus SVC Interface Hot Unplug Operation (Deprecated)

Note: This operation is deprecated, and should not be used in new designs.

The Greybus SVC Module Removed Operation should be used for any new designs.

The SVC sends this to the AP Module to tell it that an Interface that was previously the subject of an
Interface Hotplug Operation is no longer present. The SVC sends exactly one hot unplug event, for the
Interface, to the AP when this occurs.

Greybus SVC Interface Hot Unplug Request

Table 9.38 defines the Greybus SVC Interface Hot Unplug Request payload.

The Greybus SVC hot unplog request is sent only by the SVC to the AP Module. The Interface ID informs
the AP which Interface no longer has a module attached to it. The SVC shall ensure the hotplug event for
the Interface has been successfully delivered to the AP Module before sending a hot unplug.

Greybus SVC Interface Hot Unplug Response

The Greybus SVC hot unplug response message contains no payload.

Greybus SVC Interface Reset Operation

The SVC sends this to the AP Module to request it reset the indicated link.

Greybus SVC Interface Reset Request

Table 9.39 defines the Greybus SVC Interface Reset Request payload.

The Greybus SVC Interface Reset Request is sent only by the SVC to the AP Module. The Interface ID
informs the AP Module which Interface needs to be reset.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 77

Offset Field Size Value Description

0 intf_id 1 Number Interface to reset

Table 9.39: SVC Protocol Reset Request

Offset Field Size Value Description

0 intf_id 1 Number Interface whose power mode to change

1 hs_series 1 Number Frequency series in high speed mode; see Table 9.41

2 tx_mode 1 Number Power mode for TX; see Table 9.42

3 tx_gear 1 Number Gear for TX lanes

4 tx_nlanes 1 Number Number of active TX lanes

5 tx_amplitude 1 Number TX signal amplitude; see Table 9.43

6 tx_hs_equalizer 1 Number HS TX signal de-emphasis; see Table 9.44

7 rx_mode 1 Number Power mode for RX; see Table 9.42

8 rx_gear 1 Number Gear for RX lanes

9 rx_nlanes 1 Number Number of active RX lanes

10 flags 1 Bit mask See Table 9.45

11 quirks 4 Bit mask See Table 9.46

15 local_12timerdata 24 Number L2 timer configuration data for power mode change (local peer)
39 remote_2timerdata 24 Number L2 timer configuration data for power mode change (remote peer)

Table 9.40: SVC Protocol Interface Set Power Mode Request

Greybus SVC Interface Reset Response

The Greybus SVC Interface Reset response message contains no payload.

Greybus SVC Interface Set Power Mode Operation

The AP sends this to the SVC to request that it change the UniPro power mode for the UniPro link on an
Interface.

The AP may use this Operation while an Interface is ENUMERATED to manage various features of the
Link established between the Switch and the attached Module.

The AP shall additionally use this Operation in order to perform Power Management and certain Error
Handling transitions in The Interface Lifecycle.

Greybus SVC Interface Set Power Mode Request

Table 9.40 defines the Greybus SVC Interface Set Power Mode Request payload.

The request message payload contains the interface ID for which the AP requests the power mode change,
fields specifying the power mode change to apply, and a structure containing implementation-specific con-
figuration information associated with the power mode change.

The hs_series field in the request payload allows the AP to control which rate series is used when either
direction of the link is in high speed mode. The values of the hs_series field are defined in Table 9.41.

The tx_mode and rx_mode fields in the request payload allow the AP to specify a UniPro power mode for
each direction of the link. The values of these fields, along with the corresponding modes, are specified in
Table 9.42.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

78

Frequency Series Value Description

(Reserved) 0 (Reserved for future use)
A 1 High speed series A

B 2 High speed series B

(All other values reserved) 3-255 (Reserved for future use)

Table 9.41: High Speed Frequency Series

Mode Value Description

(Reserved) 0x00 (Reserved for future use)
UNIPRO_FAST MODE 0x01 Fast (HS) mode
UNIPRO_SLOW_MODE 0x02 Slow (PWM) mode
(Reserved) 0x03 (Reserved for future use)
UNIPRO_FAST_AUTO_MODE 0x04 Fast auto mode
UNIPRO_SLOW_AUTO_MODE 0x05 Slow auto mode
(Reserved) 0x06 (Reserved for future use)
UNIPRO _MODE_UNCHANGED 0x07 Leave mode unchanged
(Reserved) 0x08-0x10 (Reserved for future use)
UNIPRO_HIBERNATE_MODE 0x11 Hibernate mode
UNIPRO_OFF_MODE 0x12 Link is off

(Reserved) 0x13-0xFF (Reserved for future use)

Table 9.42: |unipro| power modes

The tx_amplitude field in the request payload allows the AP to specify the TX path signal amplitude of a
UniPro link. It applies to both local and remote peers. The values of this field, along with the corresponding
modes, are specified in Table 9.43.

The tx_hs_equalizer field in the request payload allows the AP to specify a de-emphasis value for the TX
path of a UniPro link. It applies to both local and remote peers. It is only relevant in high speed (HS)
mode, and ignored in slow (PWM) mode. The values of this field, along with the corresponding modes, are
specified in Table 9.44.

The flags field in the request payload is a bit mask which allows the AP to request the SVC to update extra
UniPro power mode settings. The mask values for the flags field are defined in Table 9.45.

The quirks field in the request payload is a bit mask which allows the AP to request behavior from the SVC
which may deviate in some way from the UniPro specification. The mask values for the quirks field are
defined in Table 9.46.

The local 12timerdata and remote_12timerdata fields in the request payload allow the AP to configure L2
timer values of the UniPro link. local 12timerdata and remote_12timerdata fields apply respectively to the
local and remote peers of the UniPro link. The content of this structure is defined in the UniPro specification
version 1.6, Table 102. All integer values in Table 102 are stored as 16-bit little-endian values.

Mode Value Description

(Reserved) 0x0 (Reserved for future use)
SMALL_AMPLITUDE 0x01 Select small TX signal amplitude
LARGE_AMPLITUDE 0x02 Select large TX signal amplitude

(all other values reserved) 0x03-0xFF (Reserved for future use)

Table 9.43: TX path signal amplitudes

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 79

Mode Value Description

NO_DE_EMPHASIS 0x0 Disable de-emphasis on HS TX path
SMALL_DE_EMPHASIS 0x01 Enable 3.5dB de-emphasis on HS TX path
LARGE_DE_EMPHASIS 0x02 Enable 6dB de-emphasis on HS TX path

(all other values reserved) 0x03-0xFF (Reserved for future use)

Table 9.44: HS TX signal de-emphasis modes

Mode Value Description

RX_TERMINATION 0x01 Enable RX-direction termination
TX_TERMINATION 0x02 Enable TX-direction termination
LINE_RESET 0x04 Request Line Reset

(Reserved) 0x08 (Reserved for future use)
(Reserved) 0x10 (Reserved for future use)
SCRAMBLING 0x20 Always set HS series

(all other values reserved) 0x40-0x80 (Reserved for future use)

Table 9.45: Flags for SVC Interface Set Power Mode Request

If one or more of the following list of conditions holds, the SVC shall transmit a Greybus SVC Interface Set
Power Mode Response message with status byte GB_.OP_INVALID. The SVC shall make no changes to the
link’s power mode in any of these cases.

1. The request’s hs_series field does not lie within the table of values given in Table 9.41.
2. The request’s tx_mode or rx_mode field is not one of the values given in Table 9.42.

3. The request’s tx.mode, rx mode, tx_ gear, rx_gear, tx_nlanes, rx_nlanes, tx_amplitude and
tx_hs_equalizer do not collectively lie within the ranges defined by the UniPro specification.

4. The request’s quirks field contains bits set which are reserved for future use or not supported by the

SVC.

Upon receipt of a Greybus SVC Interface Set Power Mode Request, the SVC shall determine if the intf_id
field in the request payload is valid, by determining if there is a UniPro link associated with the Interface
given by intf id, and whether that UniPro link is up. If so, the SVC shall attempt to change the power
mode of the UniPro link at the given interface. If not, the SVC shall transmit a Greybus SVC Interface Set
Power Mode Response message with the Greybus Operation Status in the Response message header set to
GB_OP_INVALID. The SVC shall make no changes to the link’s power mode in this case.

The tx_mode and rx_mode fields in the Greybus SVC Interface Set Power Mode Request determine the
UniPro Power Modes of the link’s transmit and receive directions, respectively. The transmit and receive
directions are defined with respect to the UniPort attached to the UniPro switch. For example, tx_mode
determines the UniPro power mode of the transmitter which is attached to the UniPro switch at the Interface
given by intf_id; tx_mode does not refer to the transmitter within the switch itself.

If either of txomode or rx.mode equals UNIPRO_HIBERNATE_MODE, both shall equal
UNIPRO_HIBERNATE_MODE. Under this condition, the following fields in the request payload

Mode Value Description
SVC_PWRM_QUIRK_HSSER 0x00000001 Always set HS series
(all other values reserved) 0x00000002-0x80000000 (Reserved for future use)

Table 9.46: Quirks for SVC Interface Set Power Mode Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 80

shall be ignored: hs_series, tx_gear, tx_nlanes, tx_amplitude, tx_hs_equalizer, rx_gear, rx_nlanes, flags, quirks,
local 12timerdata, remote_12timerdata.

When reconfiguring the link power mode as a result of receiving a Greybus SVC Interface Set Power Mode
Request, the SVC shall set the UniPro PA_HSSeries attribute for the link according to the hs_series field in
the request payload, as defined by Table 9.41.

If the SVC_.PWRM_QUIRK_HSSER bit is set in the quirks field of the request payload, the SVC
shall perform this setting regardless of whether either tx_mode or rx_mode is UNIPRO_FAST _MODE or
UNIPRO_FAST_AUTO_MODE. If SVC_PWRM_QUIRK_HSSER is unset, the SVC shall set PA_HSSeries if
and only if one of tx_mode or rx_mode is UNIPRO_FAST_MODE or UNIPRO_FAST_AUTO_MODE.

The tx_gear and rx_gear attributes specify the gear settings for the transmit and receive directions in the
new power mode configuration. The valid values for the tx_gear and rx_gear fields depend respectively on
the values of tx_mode and rx_mode.

If tx_mode or rx_mode is UNIPRO_FAST_MODE or UNIPRO_FAST_AUTO_MODE, then the valid values
for tx_gear or rx_gear, respectively, are one, two, and three.

If tx_mode or rx_mode is UNIPRO_SLOW _MODE or UNIPRO_SLOW_AUTO_MODE, then the valid values
for tx_gear or rx_gear, respectively, are the range of integers between one and seven.

If tx_mode or rx_mode is UNIPRO_MODE_UNCHANGED, direction-specific parameters (tx_gear, tx_nlanes,
SVC_PWRM_TXTERMINATION or rx_gear, rx-nlanes, SVC_PWRM_RXTERMINATION, respectively)
will be ignored.

Upon receiving the request, the SVC shall check that the Interface State with ID intf_id has DETECT equal
to DETECT_ACTIVE, and has a UNIPRO sub-state equal to UPRO_UP or UPRO_HIBERNATE.

If these conditions do not hold, the SVC shall send a response signaling an error as described below. The
SVC shall take not attempt to reconfigure any UniPro links as a result of receiving such a request.

Otherwise, the SVC shall attempt to reconfigure the power mode for the UniPro link identified by the
request.

When reconfiguring the link power mode as a result of receiving a Greybus SVC Interface Set Power Mode
Request, the link’s transmitter and/or receiver power mode shall be set to the given configuration. The
Greybus Operation Status in the Response message header of the response to a Greybus SVC Interface Set
Power Mode Request shall not be used to check the result of the power mode change operation. It shall only
be used to indicate the result of the Greybus communication only. If the Greybus Operation Status in the
Response message header of the response to a Greybus SVC Interface Set Power Mode Request is different
than GB_OP_SUCCESS, it shall indicate that an error occurred and that the power mode change could not
be initiated; the targeted link shall be in the same state as before the request was issued. If the Greybus
Operation Status in the Response message header of response to a Greybus SVC Interface Set Power Mode
Request is GB_.OP_SUCCESS, it shall indicate that there was no Greybus communication error detected
(Request and Response were successfully exchanged). However, it shall not also be considered as a successful
power mode change. The status and pwr_change result_code fields as respectively described in Table 9.47
shall be used for that unique purpose. In other words, if and only if the Greybus Operation Status in the
Response message header is GB_OP_SUCCESS and the status field in the Greybus SVC Interface Set Power
Mode Response payload as described in Table 9.47 is GB_.SVC_OP_SUCCESS, the pwr_change_result_code
field in the Response payload indicates the actual result of the power mode change request.

Greybus SVC Interface Set Power Mode Response

Table 9.47 defines the Greybus SVC Interface Set Power Mode Response payload. If the Response message
header has the Greybus Operation Status not equal to GB_OP_SUCCESS, the values of the Response payload
fields are undefined and shall be ignored.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 81

Offset Field Size Value Description
0 status 1 Number Greybus SVC Protocol Operation Status
1 pwr_change result_code 1 Number UniPro PowerChangeResultCode

Table 9.47: SVC Protocol Interface Set Power Mode Response

PowerChangeResultCode Value Description
PWR_OK

0 The request was accepted.
PWR_LOCAL 1 The local request was successfully applied.
PWR_REMOTE 2 The remote request was successfully applied.
PWR_BUSY 3 The request was aborted due to concurrent requests.
PWR_ERROR_CAP 4 The request was rejected because the requested configuration exceeded the Links capabilities.
PWR_FATAL_ERROR 5 The request was aborted due to a communication problem. The Link may be inoperable.
(A1l other values reserved) 6-255 (Reserved for future use)

Table 9.48: PowerChangeResultCode Values

If the status field in the Operation response payload as described in Table 9.47 is not GB_.SVC_OP_SUCCESS,
the value in the pwr_change_result_code field of the Response payload is undefined and shall be ignored. The
SVC shall return the following errors in the status field of the Operation Response payload depending on
the sub-state values of the Interface State with Interface ID given by intf_id in the Request payload:

o If DETECT is not DETECT_ACTIVE, the response shall have status
GB_SVC_INTF_NOT_DETECTED.

e If UNIPRO is not UPRO_UP or UPRO_HIBERNATE, the response shall have status
GB_SVC_INTF_NO_UPRO_LINK.

If the Response message header has the Greybus Operation Status equal to GB_.OP_SUCCESS and the status
field in the Operation Response payload is GB_SVC_OP_SUCCESS, the pwr_change_result_code field in the
Greybus Interface Set Power Mode response message contains a PowerChangeResultCode as defined by the
UniPro specification, version 1.6, Table 9. The pwr_change_result_code field indicates a successful Operation
or describes the reason for the Operation failure. The values of the pwr_change_result_code field are defined
in Table 9.48.

Greybus SVC Connection Create Operation

The AP Module sends this Operation to the SVC to request that it establish a UniPro connection between
the two indicated CPorts. The SVC uses each (intf_id, cport_id) pair to determine the UniPro (DeviceID _Enc,
CPortID_Enc) it represents. It is an error to attempt to create a connection using a CPort that is already
in use in another connection.

Greybus SVC Connection Create Request

Table 9.49 defines the Greybus SVC Connection Create Request payload.

The Greybus SVC connection create request is sent only by the AP Module to the SVC. The first Interface
ID and first CPort ID define one end of the connection to be established, and the second Interface ID and
CPort ID define the other end.

CPort flags can be specified as a bitwise-or of flags in flags, and are defined in table 9.50.

Upon receiving the request, the SVC shall check that the Interface States with IDs intfl_id and intf2_id both
have DETECT equal to DETECT_ACTIVE, and UNIPRO equal to UPRO_UP.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 82

Offset Field Size Value Description

0 intfl.id 1 Number First Interface

1 cportl_id 2 Number CPort on first Interface

3 intf2_id 1 Number Second Interface

4 cport2_id 2 Number CPort on second Interface
6 tc 1 Traffic class UniPro traffic class

7 flags 1 Connection flags UniPro connection flags

Table 9.49: SVC Protocol Connection Create Request

Value Flag Description

0x01 E2EFC Enable UniPro End-to-End Flow Control
0x02 CSD_N Disable UniPro Controlled Segment Dropping
0x04 CSV_N Disable UniPro CPort Safety Valve

Table 9.50: SVC Protocol Connection Create Request Flags

If these conditions do not hold, the SVC cannot satisfy the request, and shall send a response signaling
an error as described below. The SVC shall take no further action related to such an unsatisfiable request
beyond sending the response.

Otherwise, the SVC shall attempt to establish a UniPro connection between the CPort with ID cportl_id
on Interface intfl_id, and CPort with ID cport2_id on Interface intf2_id. The SVC shall attempt to establish
the connection using the Traffic Class and CPort features given by the tc and flags field in the request,
respectively. This sequence may change the values of UniPro DME attributes on the UniPorts attached to
each Interface Block identified in the request.

Greybus SVC Connection Create Response

Table 9.51 defines the Greybus SVC Connection Create Response. If the Response message header has the
Greybus Operation Status not equal to GB_.OP_SUCCESS, the value of the status field in the Operation
Response payload is undefined and shall be ignored.

The SVC shall return the following errors in the status field of the Operation Response payload depending
on the sub-state values of the Interface States with Interface IDs given by intfl_id and intf2_id in the Request
payload:

e If DETECT is not DETECT_ACTIVE in both Interface States, the response shall have status
GB_SVC_INTF_NOT_DETECTED.

e If DETECT is DETECT_ACTIVE in both Interface States, and UNIPRO is not UPRO_UP in both
Interface States, the response shall have status GB_.SVC_INTF _NO_UPRO_LINK.

If the SVC fails to establish a UniPro connection between the two Interfaces due to an I/O or
protocol error on the UniPro links, the status field in Operation Response payload shall equal
GB_SVC_OP_UNKNOWN_ERROR. When this occurs, the values of the UniPro DME attributes of one
or both of the Interfaces is unpredictable, as are the values of the UNIPRO sub-state of the Interface States
with Interface IDs given by intfl_id and intf2_id in Request payload.

Greybus SVC Connection Destroy Operation

The AP Module sends this to the SVC to request that a connection that was previously set up by a Connection
Create Operation be torn down. The AP Module shall have sent Disconnected Control Operations to the

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 83

Offset Field Size Value Description
0 status 1 Number Greybus SVC Protocol Operation Status

Table 9.51: SVC Protocol Connection Create Response

Offset Field Size Value Description

0 intfl_id 1 Number First Interface

1 cportl_id 2 Number CPort on first Interface

3 intf2_id 1 Number Second Interface

4 cport2_id 2 Number CPort on second Interface

Table 9.52: SVC Protocol Connection Destroy Request

two Interfaces prior to this call. It is an error to attempt to destroy a connection more than once.

Greybus SVC Connection Destroy Request

Table 9.52 defines the Greybus SVC Connection Destroy Request payload.

The Greybus SVC connection destroy request is sent only by the AP Module to the SVC. The two (Interface
ID, CPort ID) pairs define the connection to be destroyed.

Upon receiving the request, the SVC shall check that the Interface States with IDs intfl_id and intf2_id both
have DETECT equal to DETECT_ACTIVE, and UNIPRO equal to UPRO_UP.

If these conditions do not hold, the SVC cannot satisfy the request, and shall send a response signaling
an error as described below. The SVC shall take no further action related to such an unsatisfiable request
beyond sending the response.

Otherwise, the SVC shall attempt to disable the UniPro connection between the CPort with ID cportl_id on
Interface intfl_id, and CPort with ID cport2_id on Interface intf2_id. This sequence may change the values
of UniPro DME attributes on the UniPorts attached to each Interface Block identified in the request.

Greybus SVC Connection Destroy Response

Table 9.53 defines the Greybus SVC Connection Destroy Response payload. If the Response message header
has the Greybus Operation Status not equal to GB_.OP_SUCCESS, the value in the status field in the
Operation Response payload is undefined and shall be ignored.

The SVC shall return the following errors in the status field of the Operation Response payload depending
on the sub-state values of the Interface States with Interface IDs given by intfl_id and intf2_id in the request
payload:

e If DETECT is not DETECT_ACTIVE in both Interface State, the response shall have status
GB_SVC_INTF_NOT_DETECTED.

o If DETECT is DETECT_ACTIVE for both Interface States, and UNIPRO is not UPRO_UP in both
Interface States, the response shall have status GB_.SVC_INTF_NO_UPRO_LINK.

If the SVC fails to destroy the UniPro connection between the two Interfaces due to an I/O or
protocol error on the UniPro links, the status field in Operation Response payload shall equal
GB_SVC_OP_UNKNOWN_ERROR. When this occurs, the values of the UniPro DME attributes of one
or both of the Interfaces is unpredictable, as are the values of the UNIPRO sub-state of the Interface States
with Interface IDs given by intfl_id and intf2_id in Request payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 84

Offset Field Size Value Description

0 status 1 Number Greybus SVC Protocol Operation Status

Table 9.53: SVC Protocol Connection Destroy Response

Offset Field Size Value Description

0 count 1 Number Number of TIME_SYNC pulses

1 frame_time 8 Number The initial frame-time to intiailze to

9 strobe_delay 4 Number Inter-strobe delay in milliseconds

13 refclk 4 Number The clock rate of the frame-time counter

Table 9.54: SVC Protocol TimeSync Enable Request

Greybus SVC TimeSync Enable Operation

The AP Module uses this operation to request the SVC to enable frame-time tracking. After a successful
timesync_enable operation the SVC will generate a pulse-train of ‘count’ logical TIME_SYNC strobes to
the bitmask of WAKE_DETECT lines indicated by a previously communicated set of Interfaces. A delay
of ‘strobe_delay’ microseconds will be applied between each TIME_SYNC strobe. The range of the count
variable is from 1..4. The ‘frame_time’ parameter informs the Interface to immediately seeds its frame-time
to a value given by the AP. ‘frame-time. The ‘refclk’ parameter informs the SVC of the required clock rate
to run its frame-time tracking counter at.

Greybus SVC TimeSync Enable Request

Table 9.54 defines the Greybus SVC TimeSync Enable Request payload. The request supplies the number of
TIME_SYNC strobes to perform (count), the initial frame-time (frame_time), the delay between each strobe
(strobe_delay) and the required clock-rate for frame-time (refclk).

Greybus SVC TimeSync Enable Response

The Greybus SVC Protocol TimeSync Enable response contains no payload.

If the Response message header status field Greybus Operation Status is not equal to GB_OP_SUCCESS the
AP shall immediately issue a Greybus SVC TimeSync Disable Operation to the set of Interfaces previously
indicated in the ‘strobe_mask’ field of the Greybus SVC TimeSync Wake Pins Acquire Operation. The AP
shall then issue a Greybus SVC TimeSync Wake Pins Release Operation to the SVC.

If the Response message header status field Greybus Operation Status is equal to GB_.OP_SUCCESS the
SVC shall set the TimeSync Pulse sub-state for the indicated set of Interfaces to WAKE_ASSERTED and
WAKE_DEASSERTED repeatedly to indicate ‘count’ number of TimeSync Pulse events. The SVC may
send the response before initiating or completing the set of TimeSync Pulse events.

Greybus SVC TimeSync Disable Operation

The AP Module uses this operation to request the SVC stop tracking frame-time. The SVC will immediately
stop tracking frame-time.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 85

Offset Field Size Value Description

0 time_sync0 8 Number Authoritative frame-time at TIME_SYNCO
8 time_syncl 8 Number Authoritative frame-time at TIME_SYNC1
16 time_sync2 8 Number Authoritative frame-time at TIME_SYNC2
24 time_sync3 8 Number Authoritative frame-time at TIME_SYNC3

Table 9.55: SVC Protocol TimeSync Enable Response

Greybus SVC TimeSync Disable Request

The Greybus SVC Protocol TimeSync Disable request contains no payload.

Greybus SVC TimeSync Disable Response

The Greybus SVC Protocol TimeSync Disable response contains no payload. The SVC shall always return
GB_OP_SUCCESS to this Operation. This Greybus Operation does not affect any Interface sub-states.

Greybus SVC TimeSync Authoritative Operation

The AP Module uses this operation to request the SVC to send the authoritative frame-time at each
TIME_SYNC strobe. The SVC will return the authoritative frame-time at each TIME_SYNC in the re-
sponse phase of this operation. Unused entires in the response frame shall be initialized to zero.

Greybus SVC TimeSync Authoritative Request

The Greybus SVC Protocol TimeSync Authoritative Request contains no payload.

Greybus SVC TimeSync Authoritative Response

Table 9.55 defines the Greybus SVC TimeSync Authoritative Response payload. The response specifies the
authoritative frame-time at each TIME_SYNC strobe. Unused slots in the response shall contain zero. If
the Response message header status field Greybus Operation Status is not equal to GB_OP_SUCCESS the
values in the Operation Response payload are undefined and shall be ignored. This Greybus Operation does
not affect any Interface sub-states.

Greybus SVC TimeSync Wake Pins Acquire Operation

The AP Module uses this operation to request the SVC to take ownership-of and to establish an initial state
on a set of wake lines associated with the indicated bit-mask of Interface IDs specified by the strobe_mask
parameter in the Request phase of the Operation.

The SVC will take control of the wake lines specified in the Request and set the outputs to logical 0.
Greybus SVC TimeSync Wake Pins Acquire Request
Table 9.56 defines the Greybus SVC TimeSync Wake Pins Acquire Request payload. The request supplies

the bit-mask (strobe_mask) of Interface IDs which should have their wake pins set to output with logical
state 0.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 86

Offset Field Size Value Description

0 strobe_mask 4 Number Bit-mask of Interface IDs SVC should allocate as outputs

Table 9.56: SVC Protocol TimeSync Wake Pins Acquire Request

Greybus SVC TimeSync Wake Pins Acquire Response

The Greybus SVC Protocol TimeSync Wake Pins Acquire Response contains no payload.

If the Response message header status field Greybus Operation Status is equal to GB_OP_SUCCESS then
the SVC shall set the the TimeSync Pulse sub-state for the indicated set of Interfaces to WAKE_UNSET.
After this Operation completes the WAKE Pulse shall be re-interpreted as a TimeSync Pulse subject to the
restrictions defined in the hardware model.

If the Response message header status field Greybus Operation Status is not equal to GB_OP_SUCCESS the
AP shall abandon further TimeSync activities.

Greybus SVC TimeSync Wake Pins Release Operation
The AP Module uses this operation to request the SVC to release ownership of any previously allocated

wake pins. The SVC shall release all pins allocated for wake purposes in a previous successful Greybus SVC
TimeSync Wake Pins Acquire operation.

Greybus SVC TimeSync Wake Pins Release Request

The Greybus SVC Protocol TimeSync Wake Pins Release request contains no payload.

Greybus SVC TimeSync Wake Pins Release Response

The Greybus SVC Protocol TimeSync Wake Pins Release Response contains no payload. The SVC shall
always return GB_OP_SUCCESS to this Operation. Before completion of this Operation the the SVC shall
set the TimeSync Pulse sub-state for the set of Interfaces previously indicated in the Greybus SVC TimeSync
Wake Pins Acquire Operation to WAKE_UNSET. After this Operation completes the TimeSync Pulse shall
be re-interpreted as a WAKE Pulse subject to the restrictions defined in the hardware-model.

Greybus SVC TimeSync Ping Operation

The AP Module uses this Operation to request the SVC to send a single TimeSync event on a bitmask of
wake pins which must have previously been allocated via Greybus SVC TimeSync Wake Pins Acquire.

On receipt of this request the SVC will immediately generate a single pulse and capture the authoritative
frame-time; this frame-time will then be returned in the response phase of the TimeSync Ping Operation.

Greybus SVC TimeSync Ping Request

The Greybus SVC Protocol TimeSync Ping Request contains no payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 87

Offset Field Size Value Description

0 frame-time 8 Number Authoritative frame-time at ping event

Table 9.57: SVC Protocol TimeSync Ping Response

Offset Field Size Value Description

0 primary_intf_id 1 Number Module location

Table 9.58: SVC Protocol Module Eject Request

Greybus SVC TimeSync Ping Response

Table 9.57 defines the Greybus SVC TimeSync Ping Response payload. The response specifies the authorita-
tive frame-time at the ping event generated. If the Response message header status field Greybus Operation
Status is not equal to GB_.OP_SUCCESS the values in the Operation Response payload are undefined and
shall be ignored. This Greybus Operation does not affect any Interface sub-states.

Greybus SVC Module Eject Operation

The Greybus SVC Module Eject operation is sent by the AP Module to request the SVC to execute the
necessary actions to eject a Module from the Frame.

Although the AP may send this Operation’s request at any time following a successful Greybus SVC' Hello
Operation, the AP should ensure that the Interface Lifecycle State of each of the Interfaces in the attached
Module is either ATTACHED or OFF before doing so. Otherwise, the effect on the Greybus System is
equivalent to a Forcible Removal (Any — DETACHED) of the Module, and may otherwise disrupt the
operation of the System.

Greybus SVC Module Eject Request

The Greybus SVC Module Eject Request is defined in Table 9.58. The primary_intf_id field in the request
payload contains the Interface ID of the Primary Interface to the Module which the SVC shall eject from
the Frame.

The SVC shall not perform any checking of the Interface State with ID given by the primary_intf id field
beyond ensuring it is a valid Interface ID.

After receiving the request, the SVC shall set the RELEASE sub-state for that Interface State to RE-
LEASE_ASSERTED before sending a response back to the AP. The SVC may send the result before setting
RELEASE back to RELEASE_DEASSERTED; that is, the RELEASE pulse may end after the AP has
already received the response.

Greybus SVC Module Eject Response

The Greybus SVC Module Eject response message contains no payload.

As described in RELEASE, a RELEASE pulse is only an attempt to eject the Module. The Module may
still be in the MODULE_ATTACHED state after the AP receives the result. Furthermore, the RELEASE
pulse may fail to eject the Module.

If the release pulse is successful, the AP will receive a subsequent notification from the SVC in the form of
a Greybus SVC Module Removed Operation request.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 88

Offset Field Size Value Description

0 rail_count 1 Number Number of power rails

Table 9.59: SVC Power Monitor Get Rail Count Response

Greybus SVC Ping Operation

The Greybus SVC Ping Operation is an exchange of Messages, neither of which contains payload data.

Greybus SVC Ping Request

The Greybus SVC Ping Request Message contains no payload.

Greybus SVC Ping Response

The Greybus SVC Ping Response Message contains no payload. The status byte in the Response Message
Header shall be GB_.OP_SUCCESS.

Greybus SVC Power Monitor Get Rail Count Operation

The Greybus SVC Power Monitor Get Rail Count operation retrieves the number of power rails for which
power measurement is supported.

Greybus SVC Power Monitor Get Rail Count Request

The Greybus SVC Power Monitor Get Rail Count request is sent from the AP only. It has no payload.

Greybus SVC Power Monitor Get Rail Count Response
The Greybus SVC Power Monitor Get Rail Count response contains a 1-byte field ‘rail_count’. The maximum

supported number of rails is 254, 255 (0xff) is an invalid value. The rail count can equal 0 in which case no
rail can be measured by the SVC.

Greybus SVC Power Monitor Get Rail Names Operation

The Greybus SVC Power Monitor Get Rail Names operation requests the names of all power rails for which
power measurement is supported.

Greybus SVC Power Monitor Get Rail Names Request

The Greybus SVC Power Monitor Get Rail Names request is sent from the AP only. It has no payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 89

Offset Field Size Value Description

0 status 1 Number Greybus SVC Protocol Operation Status
1 rail_1 name 32 String Rail #1 name

33 rail 2 name 32 String Rail #2 name

()

Table 9.60: SVC Power Monitor Get Rail Names Response

Offset Field Size Value Description

0 railiid 1 Number ID of the rail that shall be measured
1 type 1 Number Measurement type indicator (Greybus SVC Power Monitor Get Sample Type Indicators)

Table 9.61: SVC Power Monitor Get Sample Request

Greybus SVC Power Monitor Get Rail Names Response

Table 9.60 defines the Greybus SVC Power Monitor Get Rail Names Response payload. If the Response mes-
sage header has the Greybus Operation Status not equal to GB_OP_SUCCESS, the values in the Operation
Response payload are undefined and shall be ignored.

Otherwise, If the status field in the Operation Response payload is not GB_.SVC_OP_SUCCESS, values in
all other fields of the Operation Response payload are undefined and shall be ignored.

The Greybus SVC Power Monitor Get Rail Names Response payload is comprised of human-readable names
for rails that support voltage, current and power measurement. Each name consists of a fixed 32-byte sub-
buffer containing a rail name padded with zero bytes. A rail name is comprised of a subset of [US-ASCII]
characters: lower- and upper-case alphanumerics and the character ‘_’. A rail name is 1-32 bytes long; a
32-byte name has no pad bytes.

The number of these buffers shall be exactly the number returned by a prior Greybus SVC Power Monitor
Get Rail Name Count operation.

If there are no measurable power rails on the platform, the status field in the Operation Response payload
shall be set to GB_.SVC_PWRMON_OP_NOT_PRESENT.

Each rail has an implicit ‘Rail ID’ which is equal to its position in the array of rail names returned by this
response. The rail whose name is first in the array shall have Rail ID 0, the second shall have Rail ID 1, and
so on. Despite using numeric IDs, the rail names returned by this operation are guaranteed to be unique.

Greybus SVC Power Monitor Get Sample Operation

The Greybus SVC Power Monitor Get Sample operation shall be used by the AP to retrieve a single
measurement.

Greybus SVC Power Monitor Get Sample Request

The Greybus SVC Power Monitor Get Sample request is sent from the AP only. It contains the ID of the
rail and the measurement type (current, voltage, power).

Greybus SVC Power Monitor Get Sample Type Indicators

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 90

Measurement type Brief Description Value
GB_SVC_PWRMON_TYPE_INVALID Invalid request value 0x00
GB_SVC_.PWRMON_TYPE_CURR Current measurement in microamps (uA) 0x01
GB_SVC_PWRMON_TYPE_VOL Voltage measurement in microvolts (uV) 0x02
GB_SVC_.PWRMON_TYPE_PWR Power measurement in microwatts (uW) 0x03

(all other values reserved) 0x04..0xFF

Table 9.62: SVC Power Monitor measurement types

Offset Field Size Value Description
0 result 1 Number Result code (Greybus SVC Power Monitor Get Sample Result Codes)
1 measurement 4 Number Measured value

Table 9.63: SVC Power Monitor Get Sample Response

Greybus SVC Power Monitor Get Sample Response

The Greybus SVC Power Monitor Get Sample response contains a 1-byte result code and the measured value
in a 4-byte unsigned integer. Units in which the retrieved values are represented are as follows: microvolts
for voltage, microamps for current and microwatts for power.

Greybus SVC Power Monitor Get Sample Result Codes

Greybus SVC Power Monitor Interface Get Sample Operation

The Greybus SVC Power Monitor Interface Get Sample operation shall be used by the AP to retrieve a
single measurement for the given interface.

Unlike the Greybus SVC Power Monitor Get Sample operation it does not require any preceding data ex-
change nor any prior knowledge about the power rails layout. It retrieves a single power supply measurement
of the interface.

Greybus SVC Power Monitor Interface Get Sample Request

The Greybus SVC Power Monitor Interface Get Sample Request can only be sent from the AP. It contains
a 1-byte interface ID and 1-byte measurement type (voltage, current, power).

Result code Brief Description Value
GB_SVC_PWRMON_GET_SAMPLE_OK Measurement OK 0x00
GB_SVC_PWRMON_GET_SAMPLE_INVAL Invalid ID provided in request 0x01
GB_SVC_PWRMON_GET_SAMPLE_NOSUPP Measurement not supported for this ID 0x02
GB_SVC_PWRMON_GET_SAMPLE_HWERR Internal hardware error 0x03

(all other values reserved) 0x04..0xFF

Table 9.64: SVC Power Monitor Get Sample result codes

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 91

Offset Field Size Value Description

0 intfiid 1 Number ID of the interface
1 type 1 Number Measurement type indicator (Greybus SVC Power Monitor Get Sample Type Indicators)

Table 9.65: SVC Power Monitor Interface Get Sample Request

Offset Field Size Value Description
0 result 1 Number Result code (Greybus SVC Power Monitor Get Sample Result Codes)
1 measurement 4 Number Measured value

Table 9.66: SVC Power Monitor Interface Get Sample Response

Greybus SVC Power Monitor Interface Get Sample Response

The Greybus SVC Power Monitor Interface Get Sample response contains a 1-byte operation result code
and the measured value in a 4-byte unsigned integer. Units in which the retrieved values are represented are
as follows: microvolts for voltage, microamps for current and microwatts for power.

Greybus SVC Power Down Operation

The Greybus SVC Power Down operation shall be used by the AP to request the SVC to forcibly power down
all the devices under its control and then put itself in power down mode. Prior to issuing such operation,
the AP shall close all Greybus communication with all interfaces and then power all interfaces down.

When the SVC Power Down operation completes, the Greybus subsystem is no more operational: hotplug
detection is unavailable, no Greybus communication with any interface is possible, and SVC is unable to
process any new Greybus operation or event.

The SVC shall be reset to recover from this state.
Greybus SVC Power Down Request

The Greybus SVC Power Down request message contains no payload.

Greybus SVC Power Down Response

The Greybus SVC Power Down response message contains no payload.

Greybus SVC Module Inserted Operation

The Greybus SVC Module Inserted request is sent by the SVC to the AP Module to indicate that a new
Module has been inserted into the Frame, as well as during initialization of a Greybus System, to inform the
AP of Modules which were already attached to the Frame.

Greybus SVC Module Inserted Request

Table 9.67 defines the Greybus SVC Module Inserted request payload. The request specifies the location of
the Primary Interface to the newly inserted Module in the primary_intf_id field. It also specifies the number
of Interfaces covered by the Module in the intf_count field; this includes the Primary Interface, plus the total

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 92

Offset Field Size Value Description

0 primary _intf_id 1 Number Module location

1 intf_count 1 Number Number of Interfaces covered by Module
2 flags 2 Number See Table 9.68

Table 9.67: SVC Protocol Module Inserted Request

Flag Value Description
NO_PRIMARY _INTERFACE 0x1 No Primary Interface to Module detected

Table 9.68: Flags for SVC Module Inserted Request

number of Secondary Interfaces to the Module, if any. The size of a Module (the value of the intf_count field
in the Module Inserted request payload) is thus always one or more.

The flags field in the request payload is a bit mask which allows the SVC to notify the AP of additional
conditions associated with the insertion event. The mask values for the flags field are defined in Table 9.68.

The NO_PRIMARY_INTERFACE mask for the flags field allows the SVC to notify the AP when an error
has occurred, and no Primary Interface to the Module was detected.

If the NO_PRIMARY_INTERFACE flag is set in the Module Inserted Request, the intf_count field shall
equal one. The Interface State with Interface ID primary_intfid shall have ORDER equal to OR-
DER_SECONDARY.

If the NO_PRIMARY_INTERFACE flag is not set in the Module Inserted request, then the Interface State
with Interface ID primary_intf_id has ORDER equal to ORDER_PRIMARY. If intf_count is greater than
one, all Interface States with IDs from (primary_intf.id 4+ 1) through (primary_intfid + intf_count - 1),
inclusive, have ORDER equal to ORDER_SECONDARY.

In all cases, regardless of the value of the flags field, every Interface identified by the request is in the
ATTACHED Lifecycle State. After sending the response to this request, the AP may thus subsequently
attempt to enumerate these Interfaces.

Additionally, the entire Module has transitioned to the MODULE_ATTACHED state, as described in Module
Attach.

The consequences of boot and enumeration when the NO_PRIMARY _INTERFACE flag is set are unspecified.

During the initialization of a Greybus System, following a successful Greybus SVC Hello Operation, the SVC
shall attempt to exchange Module Inserted Operations with the AP for each attached Module.

Unless an error occurs, there is a unique Primary Interface to each Module attached to the Frame. The
number of Operations exchanged during initialization is thus at least the number of Interface States that are
ATTACHED and whose ORDER is ORDER_PRIMARY. The primary_intf_id fields in these requests shall
be the Interface IDs of the Interface States whose ORDER is ORDER_PRIMARY.

There may be additional Secondary Interfaces to each of these Modules. The intf_count field in each such
request shall thus equal one plus the number of consecutive Interface States in the Greybus System whose
ORDER is ORDER_SECONDARY, starting from the Primary Interfaces to each attached Module, up to
the final Interface Block in the Slot. This follows from the definitions of the ORDER, sub-state and the
intf_count request field.

The SVC may also send additional Module Inserted Requests with the NO_PRIMARY_INTERFACE flag
set, as described above.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 93

Offset Field Size Value Description

0 primary _intf_id 1 Number Module location

Table 9.69: SVC Protocol Module Removed Request

Greybus SVC Module Inserted Response

The Greybus SVC Module Inserted response message contains no payload.

Greybus SVC Module Removed Operation

The Greybus SVC Module Removed request is sent by the SVC to the AP Module. It supplies the Interface
ID for the Primary Interface to the Module that is no longer present. The Interface ID shall have been the
subject of a previous Greybus SVC Module Inserted Operation.

Greybus SVC Module Removed Request
Table 9.69 defines the Greybus SVC Module Removed request payload. The request specifies the Primary
Interface ID for the Module that is no longer present.

Using the most recent Module Inserted Operation on the SVC protocol whose primary_intf_id field equaled the
primary_intf_id field in this request, the SVC notified the AP that one or more Interfaces were ATTACHED.

The current Lifecycle States of each of these Interfaces can be determined as follows.
o If the Interface was ATTACHED or OFF, then the Interface is now DETACHED.

e Otherwise, a forcible removal has occurred, as described in the DETECT section. When this occurs,
the Interface’s Lifecycle State is unpredictable.

Following a forcible removal, the AP and SVC shall proceed as described in Forcible Removal (Any —
DETACHED).

The Module is now in the MODULE_DETACHED state, as described in Module Detach.

Greybus SVC Module Removed Response

The Greybus SVC Module Removed response message contains no payload.

Greybus SVC Interface V_SYS Enable Operation

The AP uses this Operation to request the SVC to set an Interface State’s V_SYS to V_.SYS_ON.

Though the AP may send this request at any time, the AP should only do so as part of the “boot” and
“reboot” transitions in the Interface Lifecycle state machine, as described in Boot (ATTACHED — ACTI-
VATED) and Reboot (OFF — ACTIVATED).

The SVC shall not set V_SYS to V_SYS_ON except as a result of receiving a Greybus V_SYS Enable Request.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 94

Offset Field Size Value Description
0 intf_id 1 Interface ID Interface ID

Table 9.70: SVC Protocol Interface V_SYS Enable Request

Offset Field Size Value Description
0 result_code 1 Number Result Code

Table 9.71: SVC Protocol Interface V_SYS Enable Response

Greybus SVC Interface V_SYS Enable Request

Table 9.70 defines the Greybus SVC Interface V_SYS Enable Request payload.

The SVC, on receiving this request, shall attempt to set the V_SYS sub-state of the Interface State specified
by the intf_id field to V_.SYS_ON.

Greybus SVC Interface V_SYS Enable Response

Table 9.71 defines the Greybus SVC Interface V_SYS Enable Response payload. The Operation Response
payload contains a one-byte result_code field.

The Greybus Operation Status in the Operation Response message header shall not be used to determine
the value of V_SYS sub-state after the response is received. It shall only be used to indicate the result of
the Greybus communication. If the Greybus SVC Interface V_SYS Enable Response message header has
the Greybus Operation Status value different than GB_OP_SUCCESS, a Greybus communication error has
occurred; the V_SYS sub-state identified in the Operation Request shall not have changed as a result of
processing the Request. If the Greybus SVC Interface V_SYS Enable Response message header has the
Greybus Operation Status equal to GB_OP_SUCCESS, it shall indicate that no Greybus communication
error was detected.

However, a Greybus Operation Status in the Response message header equal to GB_.OP_SUCCESS alone
does not imply the intended V_SYS is now V_SYS_ON. When the Response message header has the Greybus
Operation Status equal to GB_OP_SUCCESS, the value of V_SYS may be determined given the result_code
field in the Operation Response payload, as described in Table 9.72. In particular, V_SYS is V_.SYS_ON if the
Response message header has Greybus Operation Status equal to GB_.OP_SUCCESS and the result_code in
the Operation Response payload is V_.SYS_OK. V_SYS shall not have changed value as a result of processing
the Request in any other combination of these two fields.

Greybus SVC Interface V_SYS Disable Operation

The AP uses this Operation to request the SVC to set an Interface State’s V_SYS to V_.SYS_OFF.

Result Code Value Description

V_SYS_OK 0 V_SYS enable/disable operation was successful.
(Reserved) 1 (Reserved for future use)
V_.SYS_FAIL 2 V_SYS enable/disable was attempted and failed.

(Reserved) 3-255 (Reserved for future use)

Table 9.72: Interface V_SYS Enable and Interface V_SYS Disable result_code

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 95

Offset Field Size Value Description
0 intf_id 1 Interface ID Interface ID

Table 9.73: SVC Protocol Interface V_SYS Disable Request

Offset Field Size Value Description
0 result_code 1 Number Result Code

Table 9.74: SVC Protocol Interface V_SYS Disable Response

Though the AP may send this request at any time, the AP should only do so under one of the following
conditions:

e during the “power_down” and “early_power_down” transitions in the Interface Lifecycle state machine,
as described in Power Down (ENUMERATED — OFF) and Early Power Down (ACTIVATED —
OFF).

e during the “forcible_removal” transition in the Interface Lifecycle state machine, as described in Forcible
Removal (Any — DETACHED,).

The SVC shall set V_.SYS to V_.SYS_OFF without having received an Interface V_SYS Disable Request only
under the conditions specified in V_SYS.

Greybus SVC Interface V_SYS Disable Request

Table 9.73 defines the Greybus SVC Interface V_SYS Disable Request payload.

The SVC, on receiving this request, shall attempt to set the V_SYS sub-state of the Interface State specified
by the intf_id field to V_.SYS_OFF.

Greybus SVC Interface V_SYS Disable Response

Table 9.74 defines the Greybus SVC Interface V_SYS Disable Response payload. The Operation Response
payload contains a one-byte result_code field.

The meaning of the Greybus Operation Status in the Operation Response message header and the result_code
in the Operation Response payload are analogous to the corresponding Greybus Operation Status in the
Interface V_SYS Enable Response message header and the result_code field in the Interface V_SYS Enable
Operation Response payload.

That is, the Greybus Operation Status of the Operation Response message header shall only be used to
indicate the result of the Greybus communication, exactly as described in Greybus SVC Interface V_SYS
Enable Response.

Similarly, when the Interface V_SYS Disable Response message header has the Greybus Operation Status
equal to GB_OP_SUCCESS, the value of V_SYS may be determined given the result_code field in the Op-
eration Response payload, as described in Table 9.72. In particular, V_.SYS is V_.SYS_OFF if Response
message header has the Greybus Operation Status equal to GB_.OP_SUCCESS and the result_code field in
the Operation Response payload is V_.SYS_OK. V_SYS shall not have changed value as a result of processing
the Request in any other combination of these two fields.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 96

Offset Field Size Value Description
0 intf_id 1 Interface ID Interface ID

Table 9.75: SVC Protocol Interface REFCLK Enable Request

Offset Field Size Value Description
0 result_code 1 Number Result Code

Table 9.76: SVC Protocol Interface REFCLK Enable Response

Greybus SVC Interface REFCLK Enable Operation

The AP uses this Operation to request the SVC to set an Interface State’s REFCLK to REFCLK_ON.

Though the AP may send this request at any time, the AP should only do so under one of the following
conditions:

e during the “boot” and “reboot” transitions in the Interface Lifecycle state machine, as described in
Boot (ATTACHED — ACTIVATED) and Reboot (OFF — ACTIVATED).

e while the Interface is ENUMFERATED, if REFCLK is REFCLK_OFF and the AP has determined using
application-specific means that REFCLK should be set to REFCLK_ON.

e if the Interface is ENUMERATED and REFCLK is REFCLK_OFF, during the “ms_enter” transition
in the Interface Lifecycle state machine, as described in Mode Switch Enter (ENUMERATED —
MODE_SWITCHING).

e during the “resume” transition in the Interface Lifecycle state machine, as described in Resume (SUS-
PENDED — ENUMERATED,).

The SVC shall not set REFCLK to REFCLK_ON except as a result of receiving a Greybus REFCLK Enable
Request.

Greybus SVC Interface REFCLK Enable Request

Table 9.75 defines the Greybus SVC Interface REFCLK Enable Request payload.

The SVC, on receiving this request, shall attempt to set the REFCLK sub-state of the Interface State
specified by the intf_id field to REFCLK_ON.

Greybus SVC Interface REFCLK Enable Response

Table 9.76 defines the Greybus SVC Interface REFCLK Enable Response payload. The Operation Response
payload contains a one-byte result_code field.

The Greybus Operation Status in the Operation Response message header shall not be used to determine
the value of REFCLK sub-state after the response is received. It shall only be used to indicate the result
of the Greybus communication. If the Greybus SVC Interface REFCLK Enable Response message header
has the Greybus Operation Status value different than GB_OP_SUCCESS, a Greybus communication error
has occurred; the REFCLK sub-state identified in the Operation Request shall not have changed as a result
of processing the request. If the Greybus SVC Interface REFCLK Enable Response message header has
the Greybus Operation Status equal to GB_OP_SUCCESS, it shall indicate that no Greybus communication
error was detected.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 97

Result Code Value Description

REFCLK_OK 0 REFCLK enable/disable operation was successful.
(Reserved) 1 (Reserved for future use)

REFCLK_FAIL 2 REFCLK enable/disable was attempted and failed.
(Reserved) 3-255 (Reserved for future use)

Table 9.77: Interface REFCLK Enable and Interface REFCLK Disable result_code

Offset Field Size Value Description
0 intf id 1 Interface ID Interface ID

Table 9.78: SVC Protocol Interface REFCLK Disable Request

However, a Greybus Operation Status in the Response message header equal to GB_.OP_SUCCESS alone
does not imply the intended REFCLK is now REFCLK_ON. When the Response message header has the
Greybus Operation Status equal to GB_OP_SUCCESS, the value of REFCLK may be determined given the
result_code field in the Operation Response payload, as described in Table 9.77. In particular, REFCLK is
REFCLK_ON if the Response message header has the Greybus Operation Status equal to GB_OP_SUCCESS
and the result_code in the Operation Response payload is REFCLK_OK. REFCLK shall not have changed
value as a result of processing the request in any other combination of these two fields.

Greybus SVC Interface REFCLK Disable Operation

The AP uses this Operation to request the SVC to set an Interface State’s REFCLK to REFCLK_OFF.

Though the AP may send this request at any time, the AP should only do so under one of the following
conditions:

e during “early_power_down” transition in the Interface Lifecycle state machine, as described in Early
Power Down (ACTIVATED — OFF).

e while the Interface is ENUMERATED, if REFCLK is REFCLK_ON and the AP has determined using
application-specific means that REFCLK should be set to REFCLK_OFF.

e if the Interface is ENUMFERATED and REFCLK is REFCLK_ON, during the “power_down” transition
in the Interface Lifecycle state machine, as described in Power Down (ENUMERATED — OFF).

e if the Interface is ENUMERATED and REFCLK is REFCLK_ON, during the “suspend” transition in
the Interface Lifecycle state machine, as described in Suspend (ENUMERATED — SUSPENDED).

e during the “forcible_removal” transition in the Interface Lifecycle state machine, as described in Forcible
Removal (Any — DETACHED,).

The SVC shall set REFCLK to REFCLK_OFF without having received an Interface REFCLK Disable
Request only under the conditions specified in REFCLK .

Greybus SVC Interface REFCLK Disable Request

Table 9.78 defines the Greybus SVC Interface REFCLK Disable Request payload.

The SVC, on receiving this request, shall attempt to set the REFCLK sub-state of the Interface State
specified by the intf_id field to REFCLK_OFF.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 98

Offset Field Size Value Description
0 result_code 1 Number Result Code

Table 9.79: SVC Protocol Interface REFCLK Disable Response

Greybus SVC Interface REFCLK Disable Response

Table 9.79 defines the Greybus SVC Interface REFCLK Disable Response payload. The Operation Response
payload contains a one-byte result_code field.

The meaning of the Greybus Operation Status in the Operation Response message header and the result_code
in the Operation Response payload are analogous to the corresponding Greybus Operation Status in the
Interface REFCLK Enable Response message header and the result_code field in the Interface REFCLK
Enable Operation Response payload.

That is, the Greybus Operation Status of the Operation Response message header shall only be used to
indicate the result of the Greybus communication, exactly as described in Greybus SVC Interface REFCLK
Enable Response.

Similarly, when the Interface REFCLK Disable Response message header has the Greybus Operation Status
equal to GB_OP_SUCCESS, the value of REFCLK may be determined given the result_code field in the
Operation Response payload, as described in Table 9.77. In particular, REFCLK is REFCLK_OFF if the
Response message header has Greybus Operation Status equal to GB_OP_SUCCESS and the result_code field
in the Operation Response payload is REFCLK_OK. REFCLK shall not have changed value as a result of
processing the Request in any other combination of these two fields.

Greybus SVC Interface UNIPRO Enable Operation

The AP uses this Operation to request the SVC to set an Interface State’s UNIPRO to UPRO_DOWN.

Note: Important:

1. This operation will not result in UNIPRO being UPRO_UP. The UniPro state machine requires com-
munication between peers before entering the state modeled by the UPRO_UP value of a Greybus
Interface State’s UNIPRO sub-state. The process by which UNTPRO transitions from UPRO_DOWN
to UPRO_UP is described in Boot (ATTACHED — ACTIVATED).

2. There are additional UNIPRO sub-state values which similarly are not reachable using this operation
alone.

Though the AP may send this request at any time, the AP should only do so during the “boot” and “reboot”
transitions in the Interface Lifecycle state machine, as described in Boot (ATTACHED — ACTIVATED)
and Reboot (OFF — ACTIVATED).

The SVC shall not set UNIPRO to UPRO_DOWN except as a result of receiving a Greybus UNIPRO Enable
Request.

Greybus SVC Interface UNIPRO Enable Request

Table 9.80 defines the Greybus SVC Interface UNIPRO Enable Request payload.

The SVC, on receiving this request, shall check the UNIPRO sub-state of the Interface State with Interface
ID intf id. If UNTPRO is not UPRO_OFF, the SVC shall not attemp to change the UNIPRO sub-state value.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 99

Offset Field Size Value Description
0 intf_id 1 Interface ID Interface ID

Table 9.80: SVC Protocol Interface UNIPRO Enable Request

Offset Field Size Value Description
0 result_code 1 Number Result Code

Table 9.81: SVC Protocol Interface UNIPRO Enable Response

The SVC shall signal an error to the AP in the response as described below, and shall take no further action
related to this request.

If UNIPRO is UPRO_OFF, the SVC shall attempt to set the UNIPRO sub-state of the Interface State
specified by the intf_id field to UPRO_DOWN.

Greybus SVC Interface UNIPRO Enable Response

Table 9.81 defines the Greybus SVC Interface UNIPRO Enable Response payload. The Operation Response
payload contains a one-byte result_code field.

The Greybus Operation Status in the Operation Response message header shall not be used to determine
the value of UNIPRO sub-state after the response is received. It shall only be used to indicate the result
of the Greybus communication. If the Greybus SVC Interface UNIPRO Enable Response message header
has the Greybus Operation Status value different than GB_OP_SUCCESS, a Greybus communication error
has occurred; the UNIPRO sub-state identified in the Operation Request shall not have changed as a result
of processing the Request. If the Greybus SVC Interface UNIPRO Enable Response message header has
the Greybus Operation Status equal to GB_OP_SUCCESS, it shall indicate that no Greybus communication
error was detected.

However, a Greybus Operation Status in the Response message header equal to GB_.OP_SUCCESS alone
does not imply the intended UNIPRO is now UNIPRO_DOWN. When the Response message header has
Greybus Operation Status equal to GB_OP_SUCCESS, the value of UNIPRO may be determined given the
result_code field in the Operation Response payload, as described in Table 9.82. In particular, if the Response
message header has Greybus Operation Status equal to GB_OP_SUCCESS:

e UNIPRO is UPRO_DOWN if the result_code is UPRO_OK.
e UNIPRO shall not have changed value if the result_code is UPRO_NOT_OFF.
e UNIPRO is unpredictable if the result_code is UPRO_FAIL.

Result Code Value Description

UPRO_OK 0 UNIPRO enable/disable operation was successful.

(Reserved) 1 (Reserved for future use)

UPRO_FAIL 2 UNIPRO enable/disable was attempted and failed.

UPRO_NOT_OFF 3 UNIPRO was not UPRO_OFF, attempt to set to UPRO_DOWN was not made.
(Reserved) 4-255 (Reserved for future use)

Table 9.82: Interface UNIPRO Enable and Interface UNIPRO Disable result_code

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 100

Offset Field Size Value Description
0 intf_id 1 Interface ID Interface ID

Table 9.83: SVC Protocol Interface UNIPRO Disable Request

Offset Field Size Value Description
0 result_code 1 Number Result Code

Table 9.84: SVC Protocol Interface UNIPRO Disable Response

Greybus SVC Interface UNIPRO Disable Operation

The AP uses this Operation to request the SVC to set an Interface State’s UNIPRO to UPRO_OFF.

Though the AP may send this request at any time, the AP should only do so under one of the following
conditions:

e during “early_power_down” transition in the Interface Lifecycle state machine, as described in Early
Power Down (ACTIVATED — OFF).

e during the “power_down” transition in the Interface Lifecycle state machine, as described in Power
Down (ENUMERATED — OFF).

e during the “forcible_removal” transition in the Interface Lifecycle state machine, as described in Forcible
Removal (Any — DETACHED,).

The SVC shall set UNIPRO to UPRO_OFF without having received an Interface UNIPRO Disable Request
only under the conditions specified in UNIPRO.

Greybus SVC Interface UNIPRO Disable Request

Table 9.83 defines the Greybus SVC Interface UNIPRO Disable Request payload.

The SVC, on receiving this request, shall attempt to set the UNIPRO sub-state of the Interface State specified
by the intf_id field to UPRO_OFF.

Greybus SVC Interface UNIPRO Disable Response

Table 9.84 defines the Greybus SVC Interface UNIPRO Disable Response payload. The Operation Response
payload contains a one-byte result_code field.

The meaning of the Greybus Operation Status in the Operation Response message header and the result_code
in the Operation Response payload are analogous to the corresponding Greybus Operation Status in the
Interface UNIPRO Enable Response message header and the result_code field in the Interface UNIPRO
Enable Operation Response payload.

That is, the Greybus Operation Status of the Operation Response message header shall only be used to
indicate the result of the Greybus communication, exactly as described in Greybus SVC Interface UNIPRO
Enable Response.

Similarly, when the Interface UNIPRO Disable Response message header has the Greybus Operation Status
equal to GB_OP_SUCCESS, the value of UNIPRO may be determined given the result_code field in the
Operation Response payload, as described in Table 9.82. In particular, if the Response message header has
the Greybus Operation Status equal to GB_OP_SUCCESS:

e UNIPRO is UPRO_OFF if the result_code is UPRO_OK.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 101

Offset Field Size Value Description

0 intf_id 1 Interface ID Interface to activate

Table 9.85: SVC Protocol Interface Activate Request

e UNIPRO is unpredictable if the result_code is UPRO_FAIL.

Greybus SVC Interface Activate Operation
The Greybus SVC Interface Activate Operation allows the AP to request the SVC to “activate” an Interface
by initializing it and determining if it is capable of communication via Greybus.

More precisely, use of this Operation is the final step in a sequence of Greybus Operations which are used
when transitioning an Interface to the ACTIVATED Interface Lifecycle State, as defined in The Interface
Lifecycle.

Though the AP may send this request at any time, the AP should only do so during the “boot” and “reboot”
transitions in the Interface Lifecycle state machine as defined in Boot (ATTACHED — ACTIVATED) and
Reboot (OFF — ACTIVATED). The effect of sending this request under other conditions is unspecified.

The SVC shall not send this Operation request.

Greybus SVC Interface Activate Request

Table 9.85 defines the Greybus SVC Interface Activate Request payload.

Upon receiving this request, the SVC shall check the following sub-states of the Interface State with ID
intf_id have these values:

e DETECT is DETECT_ACTIVE

o V.5YSis V.SYS_ON

e V_.CHG is V.CHG_OFF

o WAKE is WAKE_UNSET

e UNIPRO is UPRO_DOWN

e REFCLK is REFCLK_ON

e RELFASE is RELEASE_DEASSERTED

e ORDER is ORDER_PRIMARY or ORDER_SECONDARY
o MAILBOX is MAILBOX_NONE

If any of these conditions does not hold, the SVC shall send a response to the AP signaling an error
as described below. The SVC shall take no further action related to such a request beyond sending the
response.

Otherwise, the only Interface sub-state whose value is not constrained is INTF_TYPE.
The SVC and Module shall now activate the Interface by following these steps in the order specified.

If this sequence completes successfully, INTF_TYPE is one of IFT_DUMMY, IFT_UNIPRO, or
IFT_GREYBUS, and the Interface’s Lifecycle State is consequently ACTIVATED. If this sequence fails,
INTF_TYPE is IFT_UNKNOWN, and the SVC shall signal an error to the AP in the response, as described
below.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 102

This sequence is also depicted in Boot (ATTACHED — ACTIVATED) and Reboot (OFF — ACTIVATED).

1.
2.

If the SVC is notified that UNIPRO is UPRO_LSS at any time, immediately proceed to step 6.

The SVC shall initiate a WAKE pulse for a duration greater than or equal to the WAKE Pulse Cold
Boot Threshold.

After the WAKE Pulse completes, the SVC shall start a timer, for an implementation-defined duration.

If the SVC detects the timer has expired and UNIPRO is UPRO_DOWN, the activation sequence
is complete. The SVC shall set INTF_.TYPE to IFT_DUMMY. The Interface is ACTIVATED, as
described above. When this occurs, immediately proceed to step 9.

Since DETECT is DETECT_ACTIVE, a Module is attached to the Interface Block. If the attached
Module’s Interface is capable of communication via UniPro, it shall detect when the WAKE Pulse
duration equals the WAKE Pulse Cold Boot Threshold, and perform an internal reset sequence to its
initial state.

Note that the Interface may draw power from the Frame, and make use of the reference clock supplied
by the Frame, during this initialization, since V_.SYS and REFCLK are respectively V_SYS_ON and
REFCLK_ON.

If the Interface is capable of UniPro communications, it shall set UNIPRO to UPRO_LSS during its
initialization sequence.

As stated in UNIPRO, the SVC shall be notified if UNIPRO is set to UPRO_LSS, and if UNIPRO
remains UPRO_LSS for too long, UNIPRO autonomously becomes UPRO_DOWN.

Note that the Interface cannot set MAILBOX unless UNIPRO is UPRO_UP.

If the SVC receives the notification that UNIPRO is UPRO_LSS following any previous step, the SVC
shall attempt to set UNIPRO to UPRO_UP, and start another timer, for another implementation
defined duration.

If the SVC detects this timer has expired and MAILBOX is MAILBOX_NONE, the activation sequence
is complete. The SVC shall set INTF_TYPE to IFT_UNIPRO. The Interface is ACTIVATED, as
described above. When this occurs, immediately proceed to step 9.

If the Interface is notified that UNIPRO is UPRO_UP and supports Greybus communications, it may
set MAILBOX to MAILBOX_GREYBUS. The Interface shall not set MAILBOX to any other value.

Before setting MAILBOX, the Interface shall ensure that the Greybus Interface Attributes are set to
their correct values and are available for retrieval, if they are supported.

If the Interface sets MAILBOX, it shall subsequently respond to incoming Control Protocol Opera-
tion Requests as defined in that section if the appropriate CPort is connected and used for Greybus
communication.

As stated in MAILBOX, the SVC can detect if the MAILBOX value has changed, and if so, to what
value.

If this occurs and MAILBOX is MAILBOX_GREYBUS, the SVC shall set INTF.TYPE to
IFT_GREYBUS. The SVC shall then attempt to clear the mailbox attribute by setting its value to
zero, setting MAILBOX to MAILBOX_NONE as a result. If the SVC is unable to do so, the results
are undefined. Immediately proceed to step 9.

If this occurs and MAILBOX is not MAILBOX_GREYBUS, the SVC shall set INTF_.-TYPE to
IFT_.UNKNOWN;, and signal an error to the AP as described below.

Regardless of the path to reach this step, the INTF_TYPE sub-state is now set. The activation sequence
is complete.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 103

Offset Field Size Value Description
0 status 1 Number Greybus SVC Protocol Operation Status
1 intf_type 1 INTF_TYPE INTF_TYPE of activated Interface

Table 9.86: SVC Protocol Interface Activate Response

If the Interface is ACTIVATED, the SVC shall now send a successful response. Otherwise, it shall
signal an error in the response.

Greybus SVC Interface Activate Response

Table 9.86 defines the Greybus SVC Interface Activate Operation Response payload. If the Response message
header has Greybus Operation Status not equal to GB_.OP_SUCCESS, the values in the Operation Response
payload are undefined and shall be ignored.

After receiving the request, the SVC first checks various sub-states before starting the activation sequence.
If any of these checks fail, the SVC shall signal errors to the AP in the Operation Response payload by
setting the status field of the Operation Response payload as follows.

o If DETECT was not DETECT_ACTIVE, the status is GB_.SVC_INTF_NOT_DETECTED.

e Otherwise, if V_.SYS was not V_SYS_ON, the status is GB.SVC_INTF_NO_V_SYS.

e Otherwise, if V.CHG was not V_.CHG_OFF, the status is GB_.SVC_INTF_V_CHG.

e Otherwise, if WAKE was not WAKE_UNSET, the status is GB_.SVC_INTF_-WAKE_BUSY.

e Otherwise, if UNIPRO was not UPRO_DOWN, the status is GB_.SVC_INTF_UPRO_NOT_DOWN.
e Otherwise, if REFCLK was not REFCLK_ON;, the status is GB_.SVC_INTF_NO_REFCLK.

e Otherwise, if RELEASE was not RELEASE_DEASSERTED, the status is
GB_SVC_INTF_RELEASING.

e Otherwise, if ORDER was ORDER_UNKNOWN, the status is GB_.SVC_INTF_NO_ORDER.
e Otherwise, if MAILBOX was not MAILBOX_NONE, the status is GB.SVC_INTF_MBOX_SET.

Also as described above, INTF_TYPE may be IFT_UNKNOWN due to the Interface having set MAILBOX
to an illegal value. If this occurred, the SVC shall signal an error to the AP by setting the status field in the
Operation Response payload to GB_.SVC_INTF_BAD_MBOX.

If the Interface is ACTIVATED and no other errors occur, the SVC shall set the Greybus Operation Status in
the Response message header to GB_OP_SUCCESS and the status field of the Operation Response payload
to GB_SVC_OP_SUCCESS. In this case, the intf_type field in the Operation Response payload contains the
numeric value of the INTF_TYPE as defined in INTF_TYPE.

Greybus SVC Interface Resume Operation

The Greybus SVC Interface Resume Operation allows the AP to request the SVC to “resume” an Interface
which was previously SUSPENDED, allowing it to later be ENUMFERATED.

More precisely, use of this Operation is one step in a sequence of Greybus Operations which are used when
transitioning an Interface to the ENUMERATED Interface Lifecycle State from the SUSPENDED Lifecycle
State, as defined in The Interface Lifecycle.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 104

Offset Field Size Value Description

0 intf_id 1 Interface ID Interface to resume

Table 9.87: SVC Protocol Interface Resume Request

Though the AP may send this request at any time, the AP should only do so during the “resume” transition
in the Interface Lifecycle state machine as defined in Resume (SUSPENDED — ENUMERATED). The effect
of sending this request under other conditions is unspecified.

The SVC shall not send this Operation request.

Greybus SVC Interface Resume Request

Table 9.87 defines the Greybus SVC Interface Resume Request payload.

Upon receiving this request, the SVC shall check the following sub-states of the Interface State with ID
intf_id have these values:

e DETECT is DETECT_ACTIVE

e V.5YS is V.SYS_ON

o WAKE is WAKE_UNSET

e UNIPRO is UPRO_HIBERNATE

e REFCLK is REFCLK_ON

o RELFEASE is RELEASE_ DEASSERTED

o INTF_TYPE is IFT_GREYBUS

e ORDER is ORDER_PRIMARY or ORDER_SECONDARY
o MAILBOX is MAILBOX_NONE

If any of these conditions does not hold, the SVC shall send a response to the AP signaling an error
as described below. The SVC shall take no further action related to such a request beyond sending the
response.

The SVC and Module shall now resume the Interface by following these steps in the order specified.
This sequence is also depicted in Resume (SUSPENDED — ENUMERATED).

1. If the SVC detects at any time that MAILBOX is MAILBOX_GREYBUS, the resume sequence has
succeeded. Go directly to step 6.

2. The SVC shall initiate a WAKE Pulse for a duration less than the WAKE Pulse Cold Boot Threshold.

After the WAKE Pulse, the SVC shall delay in this step for an implementation-defined duration to
allow the Interface to prepare for the sequence to continue.

3. Since INTF_TYPE is IFT_GREYBUS, the Interface is capable of UniPro and Greybus communication.

The Interface shall detect the WAKE Pulse, and that its duration was less than the Wake Pulse
Cold Boot Threshold. As a result, it shall perform an implementation-specific resume sequence. This
sequence shall ensure that the Interface receives a notification if the SVC attempts to set UNIPRO to
UPRO_UP.

Note that the Interface may draw power from the Frame, and make use of the reference clock supplied
by the Frame, during this resume sequence, since V_SYS and REFCLK are respectively V_SYS_ON
and REFCLK_ON.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 105

4. As described in UNIPRO, the SVC can attempt to set UNIPRO to UPRO_UP, and shall be notified
if the attempt succeeds or fails.

The SVC shall now attempt to set UNIPRO to UPRO_UP, and delay until it is notified whether the
attempt succeeds or fails.

If the attempt succeeds, the SVC sets a timer for an implementation-defined duration. If the SVC
detects this timer has expired and MAILBOX is MAILBOX_NONE, the resume sequence has failed.
The SVC shall signal an error to the AP as described below. Go directly to step 6.

If the attempt fails, the resume sequence has failed. The SVC shall signal an error to the AP as
described below. Go directly to step 6.

5. As described above, the Interface shall also be notified that UNIPRO has successfully been set to
UNIPRO_UP. When this occurs, the Interface shall set MAILBOX to MAILBOX_GREYBUS. The
Interface shall not set MAILBOX to any other value.

After setting MAILBOX, the Interface shall subsequently respond to incoming Control Protocol Oper-
ation Requests as defined in that section if the appropriate CPort is connected and used for Greybus
communication.

The SVC shall detect the new value of MAILBOX. The SVC shall then attempt to clear the mailbox
attribute by setting its value to zero, setting MAILBOX to MAILBOX_NONE as a result. If the SVC
is unable to do so, the results are undefined.

Otherwise, the resume sequence has succeeded. The SVC shall signal this success to the AP in the
response to this request as described below.

6. The resume sequence is now complete, and has succeeded or failed. The SVC shall signal completion
and either success or failure to the AP as described below.

Greybus SVC Interface Resume Response

Table 9.88 defines the Greybus SVC Interface Resume Response payload. If the Response message header
has Greybus Operation Status not equal to GB_OP_SUCCESS, the value in the Operation Response payload
is undefined and shall be ignored.

After receiving the request, the SVC first checked various sub-states before starting the resume sequence. If
any of these checks fail, the SVC shall signal errors to the AP in the Operation Response payload by setting
the status field of the Operation Response payload as follows.

o If DETECT was not DETECT_ACTIVE, the status is GB_.SVC_INTF_NOT_DETECTED.
e Otherwise, if V_SYS was not V_.SYS_ON, the status is GB_.SVC_INTF_NO_V_SYS.
e Otherwise, if WAKE was not WAKE_UNSET, the status is GB_.SVC_INTF_WAKE_BUSY.

e Otherwise, if UNIPRO was not UPRO_HIBERNATE, the status is
GB_SVC_INTF_UPRO_NOT_HIBERNATED.

e Otherwise, if REFCLK was not REFCLK_ON, the status is GB_.SVC_INTF_NO_REFCLK.

e Otherwise, if RELEASE was not RELEASE_DEASSERTED, the status is
GB_SVC_INTF_RELEASING.

e Otherwise, if ORDER was ORDER_UNKNOWN;, the status is GB_.SVC_INTF_NO_ORDER.
e Otherwise, if MAILBOX was not MAILBOX_NONE, the status is GB_.SVC_INTF_MBOX_SET.

If a protocol error occurs due to erroneous Interface behavior which writes a different value than MAIL-
BOX_GREYBUS to MAILBOX, the SVC shall set the status field in Operation Response payload to
GB_SVC_INTF_BAD_MBOX.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 106

Offset Field Size Value Description
0 status 1 Number Greybus SVC Protocol Operation Status

Table 9.88: SVC Interface Resume Response

Offset Field Size Value Description

0 intf_id 1 Interface ID Interface State whose MAILBOX was set
1 result_code 2 Number UniPro ConfigResultCode

3 mailbox 4 Number MAILBOX value

Table 9.89: SVC Protocol Interface Mailbox Event Request

If the resume sequence failed because the SVC detected in step 4 that MAILBOX was MAILBOX_NONE,
the SVC shall set the status field in the Operation response payload to GB_.SVC_INTF_OP_TIMEOUT.

If the resume sequence failed because the SVC was notified in step 4 that the attempt to set
UPRO to UPRO_UP failed, the SVC shall set the status field in the Operation Response payload to
GB_SVC_INTF_NO_UPRO_LINK.

If the resume sequence succeeded and no other errors occurred, the SVC shall set the Greybus Operation
Status in the Response message header to GB_OP_SUCCESS and set the status field in Operation Response
payload to GB_.SVC_OP_SUCCESS.

Greybus SVC Interface Mailbox Event Operation

The Greybus SVC Interface Mailbox Event Operation allows the SVC to inform the AP that the MAILBOX
of an Interface State has changed value.

Though this can occur at other times, it carries special meaning during the “ms_exit” transition from the
MODE_SWITCHING Interface Lifecycle State to ENUMERATED, as defined in The Interface Lifecycle.
This is described in Mode Switch Exit (MODE_SWITCHING — ENUMERATED).

Though an Interface can set the MAILBOX sub-state at other times, it should only do so when explicitly
required to do so by the Greybus Specification. If a MAILBOX changes value due to other circumstances,
the SVC shall send this Operation Request subject to the restrictions described below, with results that are
implementation-defined.

The AP shall not send this Operation Request.

Greybus SVC Interface Mailbox Event Request

Table 9.89 defines the Greybus SVC Interface Mailbox Event Request payload.

As described in MAILBOX, under certain circumstances, an Interface can set the MAILBOX sub-state for
that Interface State. This event can be detected by the SVC, and the SVC can subsequently read the value
written.

If the SVC detects such an attribute write, it shall attempt to send an SVC Interface Mailbox Event Request
to the AP if none of the following conditions hold:

1. The SVC is currently activating that Interface, as described in Greybus SVC Interface Activate Request.
2. The SVC is currently resuming that Interface, as described in Greybus SVC' Interface Resume Request.
3. The Interface is an AP Interface.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 107

Offset Field Size Value Description

0 intf_id 1 Number Interface to reset
1 reason 1 Number Greybus SVC Interface Oops Reason

Table 9.90: SVC Protocol Interface Oops Request

If any of the above conditions hold, the SVC shall not attempt to send a Mailbox Event Request to the AP
as a result of detecting that the attribute was written.

The SVC shall attempt to exchange a Mailbox Event Request Operation with the AP by sending this request
under any other circumstances. If the Operation fails, the SVC may take no further action as a result of
detecting the mailbox attribute write.

Before sending the request, the SVC shall:

1. Attempt to read the mailbox attribute, storing the ConfigResultCode as defined in the UniPro speci-
fication, as well the mailbox attribute value if the read is successful.

2. If the mailbox attribute is read successfully, the SVC shall clear it by setting its value to zero, thus
setting the MAILBOX Interface State sub-state to MAILBOX_NONE.

If the SVC is unable to successfully clear the attribute, the results are undefined.

The SVC shall then send the request. The intf.id field in the request payload shall equal the MAILBOX
Interface State’s Interface ID. The result_code field in the request payload shall equal the previously stored
ConfigResultCode. The mailbox field in the request payload shall be zero if the read failed, and otherwise
shall equal the mailbox attribute’s value.

Greybus SVC Interface Mailbox Event Response

The Greybus SVC Interface Mailbox Event Response has no payload.

Greybus SVC Interface Oops Operation

The SVC sends this to the AP Module to notify it that an Interface has experienced a fatal error.

Greybus SVC Interface Oops Request

Table 9.90 defines the Greybus SVC Interface Oops Request payload.

The Greybus SVC Interface Oops Request shall be sent only by the SVC to the AP Module. The Interface
ID informs the AP Module which Interface has experienced a fatal error. The reason field specifies the cause
of the fatal error. Presently, the only cause is GB_.OOPS_REASON_OVERCURRENT, which indicates the
Interface has caused an overconsumption event on the V_SYS power bus.

Greybus SVC Interface Oops Reason

Table 9.91 defines the constants used to indicate the reason in an Interface Oops Request.

Greybus SVC Interface Oops Response

The Greybus SVC Interface Oops Response Message contains no payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 108

reason Brief Description Value
GB_OOPS_REASON_INVALID Invalid reason value 0x00
GB_OOPS_REASON_OVERCURRENT Interface shut down due to V_SYS overconsumption 0x01

(all other values reserved) 0x02..0xff

Table 9.91: SVC Oops reasons

Offset Field Size Value Description
0 intf_id 1 Interface ID Interface ID

Table 9.92: SVC Protocol Interface V_.CHG Enable Request

Greybus SVC Interface V_.CHG Enable Operation

The AP uses this Operation to request the SVC to set an V_CHG sub-state of Interface State’s to
V_CHG_ON.

The SVC shall not set V_.CHG to V_.CHG_ON except as a result of receiving a Greybus V_CHG Enable
Request.

Greybus SVC Interface V_.CHG Enable Request

Table 9.92 defines the Greybus SVC Interface V_.CHG Enable Request payload.

The SVC, on receiving this request, shall attempt to set the V_.CHG sub-state of the Interface State specified
by the intf_id field to V_.CHG_ON.

Greybus SVC Interface V_CHG Enable Response

Table 9.93 defines the Greybus SVC Interface V_CHG Enable Response payload. The Operation Response
payload contains a one-byte result_code field.

The Greybus Operation Status in the Operation Response message header shall not be used to determine
the value of V_.CHG sub-state after the response is received. It shall only be used to indicate the result of
the Greybus communication. If the Greybus SVC Interface V_.CHG Enable Response message header has
the Greybus Operation Status value different than GB_OP_SUCCESS, a Greybus communication error has
occurred; the V_CHG sub-state identified in the Operation Request shall not have changed as a result of
processing the Request. If the Greybus SVC Interface V_.CHG Enable Response message header has the
Greybus Operation Status equal to GB_OP_SUCCESS, it shall indicate that no Greybus communication
error was detected.

However, a Greybus Operation Status in the Response message header equal to GB_OP_SUCCESS alone does
not imply the intended V_.CHG is now V_.CHG_ON. When the Response message header has the Greybus
Operation Status equal to GB_OP_SUCCESS, the value of V_.CHG may be determined given the result_code
field in the Operation Response payload, as described in Table 9.94. In particular, V_.CHG is V.CHG_ON if
the Response message header has Greybus Operation Status equal to GB_OP_SUCCESS and the result_code

Offset Field Size Value Description
0 result_code 1 Number Result Code

Table 9.93: SVC Protocol Interface V_.CHG Enable Response

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 109

Result Code Value Description

V_CHG_OK 0 V_CHG enable/disable operation was successful.
V_CHG_FAIL 1 V_CHG enable/disable was attempted and failed.
(Reserved) 2-255 (Reserved for future use)

Table 9.94: Interface V_CHG Enable and Interface V_CHG Disable result_code

Offset Field Size Value Description
0 intf_id 1 Interface ID Interface ID

Table 9.95: SVC Protocol Interface V_CHG Disable Request

in the Operation Response payload is V.CHG_OK. V_CHG shall not have changed value as a result of
processing the Request in any other combination of these two fields.

Greybus SVC Interface V_CHG Disable Operation

The AP uses this Operation to request the SVC to set an V_CHG sub-state of Interface State’s to
V_CHG_OFF.

The SVC shall set V_.CHG to V_.CHG_OFF without having received an Interface V_.CHG Disable Request
only under the conditions specified in V_CHG.

Greybus SVC Interface V_CHG Disable Request

Table 9.95 defines the Greybus SVC Interface V_.CHG Disable Request payload.

The SVC, on receiving this request, shall attempt to set the V_.CHG sub-state of the Interface State specified
by the intf_id field to V.CHG_OFF.

Greybus SVC Interface V_CHG Disable Response

Table 9.96 defines the Greybus SVC Interface V_.CHG Disable Response payload. The Operation Response
payload contains a one-byte result_code field.

The meaning of the Greybus Operation Status in the Operation Response message header and the result_code
in the Operation Response payload are analogous to the corresponding Greybus Operation Status in the
Interface V_.CHG Enable Response message header and the result_code field in the Interface V_.CHG Enable
Operation Response payload.

That is, the Greybus Operation Status of the Operation Response message header shall only be used to
indicate the result of the Greybus communication, exactly as described in Greybus SVC Interface V_.CHG
Enable Response.

Similarly, when the Interface V_.CHG Disable Response message header has the Greybus Operation Status
equal to GB_.OP_SUCCESS, the value of V.CHG may be determined given the result_code field in the

Offset Field Size Value Description
0 result_code 1 Number Result Code

Table 9.96: SVC Protocol Interface V_CHG Disable Response

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 110

Offset Field Size Value Description

0 intf_id 1 Number Interface whose power consumption to limit
1 mw 2 Number Power limit to be set in milli-watts

Table 9.97: SVC Protocol Interface Set V_SYS Power Limit Request

Offset Field Size Value Description

0 status 1 Number Greybus SVC Protocol Operation Status

Table 9.98: SVC Protocol Interface Set V_SYS Power Limit Response

Operation Response payload, as described in Table 9.94. In particular, V_.CHG is V_CHG_OFF if Response
message header has the Greybus Operation Status equal to GB_OP_SUCCESS and the result_code field in the
Operation Response payload is V.CHG_OK. V_CHG shall not have changed value as a result of processing
the Request in any other combination of these two fields.

Greybus SVC Interface Set V_SYS Power Limit Operation

The AP Module uses this Operation to set a limit to the power delivered to an Interface. If this Operation
is successfully exchanged, and the Interface draws more power through the V_SYS power bus than the
amount specified in the Request, the Frame shall disable power delivery to the Interface by setting V_SYS
to V.SYS_OFF. The SVC shall detect this event, and subsequently exchange a Greybus SVC Interface Oops
Operation, with the AP Module in order to notify the AP Module about the overconsumption event. If this
Operation fails the Interface power limit shall be set to the default limit and an error shall be sent to the
AP.

Greybus SVC Interface Set V_SYS Power Limit Request

Table 9.97 defines the Greybus SVC Interface Set Power Limit Request payload.

The Greybus SVC Interface Set V_SYS Power Limit Request shall be sent only by the AP Module to the
SVC. The Interface ID informs the SVC of the Interface it has to impose the power limit on. The mw field
specifies the power limit in milli-watts.

Greybus SVC Interface Set V_SYS Power Limit Response

Table 9.98 defines the Greybus SVC Interface Set V_SYS Power Limit Response.

The Response contains the status of the Operation. For more information refer to Greybus SVC' Protocol
Operation Status.

Bootrom Protocol

Note: The Bootrom Protocol is deprecated for new Greybus implementations. The Firmware
Download Protocol should be used instead.

While the Bootrom Protocol supports downloading Interface Firmware via Greybus, it lacks support for
other features provided by the Firmware Management Protocol and other related Protocols, such as:

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 111

e Proper Connection Management
e Downloading Interface Backend Firmware

¢ Indicating to an Interface that it should store downloaded firmware on a non-volatile medium for later
use

However, an implementation of this Protocol is part of a Greybus implementation which can no longer be
changed. Because of this, AP Modules should maintain legacy compatibility for this protocol.

The Greybus Bootrom Protocol may be used by an Interface to download Interface Firmware via UniPro
when the Interface does not have suitable Interface Firmware already available.

If a

n Interface implements this Greybus Protocol, the following additional requirements or exceptions hold:

e Any Manifest the Interface transmits to the AP via the Control Protocol shall contain exactly one
CPort Descriptor with id field different than zero. The protocol field in that CPort Descriptor shall
equal “Bootrom” (0x15), as described in Table 6.10.

As a special exception, the Manifest may also contain one additional CPort Descriptor with id field
equal to zero. This descriptor, if present, shall be ignored when received by the AP, along with any
Bundle Descriptors it refers to, if any.

e The Interface shall implement the Greybus Interface Attributes. The value of the Ara Initialization
Status attribute shall be set to one of 0x00000006 or 0x00000009 before any time the Interface sets the
value of MAILBOX .

e If the AP detects one of these reserved Ara Initialization Status attribute values has been set, it shall
not enable UniPro End-to-End Flow Control on any Connections it establishes with the Interface.

The Operations in the Greybus Bootrom Protocol are:

int

int

int

int

int

version(u8 offer major, u8 offer minor, u8 *major, u8 *minor);
Refer to Common Greybus Protocol Version Operation.

ap_ready(void) ;
The AP may send this Request to the Interface to confirm that the AP is now ready to receive Requests
over the Connection, and the Interface can start the firmware download process. Until this Request is
received by the Interface, it shall not send any Requests on the Connection.

firmware_size(u8 stage, u32 *size);

The Interface requests from the AP the size of the Interface Firmware to load, specifying the stage
of the boot sequence for which the Interface is requesting firmware. The AP then locates a suitable
firmware blob, and associates that firmware blob with the requested boot stage until it next receives a
Firmware Size Request, and responds with the blob’s size in bytes, which must be nonzero.

get_firmware(u32 offset, u32 size, void *data);

The Interface requests a finite stream of bytes in the firmware blob from the AP, passing its current
offset into the firmware blob, and the size of the stream it currently needs. The AP responds with
exactly the number of bytes requested, taken from the firmware blob currently associated with this
Connection at the specified offset.

ready_to_boot(u8 status);

The Interface implementing the Protocol requests permission from the AP to jump into the firmware
blob it has loaded. The Request sent to the AP includes a status indicating whether the retrieved
firmware blob is valid and secure, valid but insecure, or invalid. The AP decides whether to permit
the module to boot in its current condition: if so, it sends a success code in its Response’s status byte,
otherwise, it sends an error code in its Response’s status byte.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 112

Bootrom Operation Type Request Value Response Value

Invalid 0x00 0x80
Protocol Version 0x01 0x81
Firmware Size 0x02 0x82
Get Firmware 0x03 0x83
Ready to Boot 0x04 0x84
AP Ready 0x05 0x85
(all other values reserved) 0x06..0x7e 0x86..0xfe
Invalid 0x7f Oxff

Table 9.99: Bootrom Operation Types

Greybus Bootrom Operations

Table 9.99 describes the Greybus Bootrom Operation Types and their values. A Message Type consists of an
Operation Type combined with a flag (0x80) indicating whether the Operation is a Request or a Response.

Greybus Bootrom Protocol Version Operation
The Greybus Bootrom Protocol Version Operation is the Common Greybus Protocol Version Operation for
the Bootrom Protocol.

Greybus implementations adhering to the Protocol specified herein shall specify the value zero (0) for the
version_major and one (1) for the version minor fields found in this Operation’s Request and Response
messages.

The Greybus Bootrom Protocol definition shall not change the required values for the version_major or
version_minor fields in the future. This Protocol’s Operations are fixed and shall not change in future
versions of the Greybus Specification.

Greybus Bootrom Protocol AP Ready Operation

The Greybus Bootrom Protocol AP Ready Operation allows the AP to indicate that it is ready to receive
Requests from the Interface over the Bootrom Connection.

Greybus Bootrom Protocol AP Ready Request

The Greybus Bootrom AP Ready Request Message has no payload.

Before receiving this Request, the Interface shall not send any Requests on the Bootrom Connection. After
receiving this Request, the Interface may send Requests on the Bootrom Connection.

Greybus Bootrom Protocol AP Ready Response

The Greybus Bootrom AP Ready Response Message has no payload.

Greybus Bootrom Firmware Size Operation

The Greybus Bootrom Firmware Size Operation allows the Interface to submit a boot stage to the AP, so
that the AP can associate a firmware blob with that boot stage and respond with its size. The AP keeps

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 113

Offset Field Size Value Description

0 stage 1 2 Stage is fixed to two.

Table 9.100: Bootrom Protocol Firmware Size Request

Offset Field Size Value Description
0 size 4 Number Size of the blob in bytes

Table 9.101: Bootrom Protocol Firmware Size Response

the firmware blob associated with the boot stage until it receives another Firmware Size Request on the
same Connection, but is not required to send identical firmware blobs in Response to different Requests with
identical boot stages, even to the same Interface.

The boot stage parameter is fixed as a result of this Protocol’s deprecation.

Greybus Bootrom Firmware Size Request

Table 9.100 defines the Greybus Bootrom Firmware Size Request payload. The Request supplies the boot
stage of the Interface implementing the Protocol. The stage shall equal two.

Greybus Bootrom Firmware Size Response

Table 9.101 defines the Greybus Firmware Size Response payload. The Response supplies the size of the
firmware blob which the AP has made available to the Interface for download.

Greybus Bootrom Get Firmware Operation

The Greybus Bootrom Get Firmware Operation allows the Interface to retrieve a stream of bytes at an
offset within the firmware blob from the AP. The AP responds with the requested number of bytes from
the Connection’s associated firmware blob at the requested offset, or with an error status without payload
if no firmware blob has yet been associated with this Connection or if the requested stream size exceeds the
firmware blob’s size minus the requested offset.

Greybus Bootrom Get Firmware Request

Table 9.102 defines the Greybus Bootrom Get Firmware Request payload. The Request specifies an offset
into the firmware blob, and the size of the stream of bytes requested. The stream size requested must be
less than or equal to the size given by the most recent Firmware Size Response (Greybus Bootrom Firmware
Size Response) minus the offset; when it is not, the AP shall signal an error in its Response. The Interface
is responsible for tracking its offset into the firmware blob as needed.

Offset Field Size Value Description

0 offset 4 Number Offset into the firmware blob
4 size 4 Number Size of the byte stream requested

Table 9.102: Bootrom Protocol Get Firmware Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 114

Offset Field Size Value Description

0 data size Data Data from the firmware blob

Table 9.103: Bootrom Protocol Get Firmware Response

Offset Field Size Value Description

0 status 1 Number Greybus Bootrom Ready to Boot Firmware Blob Status

Table 9.104: Bootrom Protocol Ready to Boot Request

Greybus Bootrom Get Firmware Response

Table 9.103 defines the Greybus Bootrom Get Firmware Response payload. The Response includes the
stream of bytes requested by the Interface. In the case that the AP cannot fulfill the Request, such as when
the requested stream size was greater than the total size of the firmware blob, it shall signal an error in the
status byte of the Response header.

Greybus Bootrom Ready to Boot Operation

The Greybus Bootrom Ready To Boot Operation allows the requesting Interface to notify the AP that it has
successfully loaded the Connection’s currently associated firmware blob, and is able to execute that blob,
as well as indicate the status of its firmware blob. The AP shall then send a Response empty of payload,
indicating via the header’s status byte whether or not it permits the Interface to continue booting.

The Interface shall send a Ready To Boot Request only when it has successfully loaded a firmware blob and
can execute that firmware.

Greybus Bootrom Ready to Boot Request

Table 9.104 defines the Greybus Bootrom Ready To Boot Request payload. The Request gives the security
status of its firmware blob.

Before sending this Request, the Interface should ensure that all outstanding Get Firmware Operation Re-
quests it has sent have received Responses from the AP. The Interface should also not transmit any additional
UniPro Segments with nonempty L4 payload on any Connection after those containing this Request payload.
The effect of sending this Request under other conditions are undefined.

Greybus Bootrom Ready to Boot Firmware Blob Status

Table 9.105 defines the constants by which the Interface can indicate the status of its firmware blob to the
AP in a Greybus Bootrom Ready to Boot Request.

Firmware Blob Status Brief Description Status Value

BOOT_STATUS_INVALID Firmware blob could not be validated 0x00

BOOT_STATUS_INSECURE Firmware blob is valid but insecure 0x01

BOOT_STATUS_SECURE Firmware blob is valid and secure 0x02
(Reserved Range) 0x03..0xFF

Table 9.105: Bootrom Ready to Boot Firmware Blob Statuses

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 115

Greybus Bootrom Ready to Boot Response

The Greybus Bootrom Ready to Boot Response has no payload.

In the case that the AP forbids the Interface from booting, it shall signal an error in the status byte of the
Response Message’s header. Otherwise, the status byte shall equal GB_.OP_SUCCESS, indicating permission
to boot.

Before sending the Response, the AP should ensure that all outstanding Control Protocol Requests to the
Interface have received Responses. The effect of sending this Request under other conditions is undefined.

Provided that the recommendations for the Interface and the AP defined in this Protocol are followed, the
Request and Response of the single Ready to Boot Operation exchanged between the Interface and the AP
are the final UniPro Messages exchanged between the two.

When this occurs, the Interface may execute the downloaded firmware blob previously retrieved using this
Protocol, and the following is permitted as a special case exception to restrictions made elsewhere in this
Specification.

1. The Interface may treat its Control and Bootrom Connections as though they had been closed as
described in Connection Management.

2. The Interface may, at most once, make a new Manifest available for retrieval to the AP, and thus send
different Response payloads to the Greybus Control Get Manifest Size Operation and Greybus Control
Get Manifest Operation Requests, should new Requests on the Control Connection be received later.

The new Manifest shall not contain any CPort Descriptors whose protocol field equals “Bootrom”
(0x15).

3. The Interface shall set the Ara Initialization Status attribute to a value different than 0x00000006 or
0x00000009.

4. The Interface may subsequently set MAILBOX to MAILBOX_GREYBUS, causing the SVC to ex-
change a Greybus SVC Interface Mailbox Event Operation with the AP. If the Interface does so, it
shall:

e ensure that if its Control CPort is subsequently reconnected, UniPro Flow Control Tokens shall
subsequently be transmitted to the AP as buffer space for receiving Control Protocol Requests
becomes available, and

e subsequently respond to incoming Control Protocol Operation Requests as defined in that section
if the Control CPort is connected and used for Greybus communication.

5. The AP should, after exchanging the Interface Mailbox Event Operation with the SVC, attempt to
release system resources associated with the Control and Bootrom Connections to the Interface.

6. The AP should then attempt to open a Control Connection with the Interface, and retrieve its Manifest
once more.

This sequence, when possible, is a Legacy Mode Switch. Though the Interface remains in the ENUMER-
ATED Interface Lifecycle State throughout a Legacy Mode Switch and afterwards, its Manifest may change
at most once as a result.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 116

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 117

Chapter 10

Device Class Connection Protocols

This section defines a group of Protocols whose purpose is to provide a device abstraction for functionality
commonly found on mobile handsets. Modules which implement at least one of the Protocols defined in
this section, and which do not implement any of the Protocols defined below in Bridged PHY Connection
Protocols, are said to be device class conformant.

Note: Two UniPro-based protocols will take the place of device class Protocol definitions in this section:
e MIPI CSI-3: for camera Modules
e JEDEC UFS: for storage Modules

Audio Protocol

This section defines the operations used on connections implementing the Greybus Audio Protocol. This
Protocol allows an AP Module to manage audio devices present on a Module. The Protocol is strongly
influenced by the Advanced Linuz Sound Architecture (ALSA) and is designed to fit closely with it.

There are two types of Audio Connections defined by the Greybus Audio Protocol: Audio Management
Connections and Audio Data Connections. Audio Management Connections are used to communicate man-
agement related operations. Audio Data Connections are used to stream audio data. All Greybus Audio
Protocol operations except for the Greybus Audio Send Data Operation are sent over an Audio Management
Connection. There shall be at least one Audio Data Connection associated with each Audio Management
Connection.

The audio data shall be generated using Pulse-Code Modulation.

Required Functionality and Controls

A Greybus Audio Module shall have at least one endpoint (e.g., speaker, microphone, headphone jack,
headset jack). There are two types of endpoints, input and output endpoints. Input endpoints are used
when converting sounds into digital audio data that are sent to an AP Module (e.g., microphone). Output
endpoints are used when converting digital audio data received from an AP Module into sounds (e.g.,
speaker). Some endpoints are used for both (e.g., headset jack).

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 118

Each endpoint shall support stereo audio data even when the underlying hardware does not. When the
underlying hardware does not support stereo audio data, the module shall make the necessary conversions
in order to support it. Exactly how that is done is left to the audio manufacturer.

Additionally, all endpoints shall support volume and mute controls for each channel.

Extended Functionality and Controls

A Greybus Audio Module may support functionality and controls that are far more elaborate than the
required set. These extended features shall be supported by the AP Module downloading a matching MSP
with the necessary support. How this is done is out of the scope of this document.

Audio Management Operations

The operations in the Greybus Audio Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int get_topology_size(ul6 *descriptor_size);
Returns the size of the audio device’s topology data structure.

int get_topology(struct gb_audio_descriptor *descriptor);
Returns a data structure containing the audio device’s supported Digital Audio Interfaces (DAIs),
controls, widget, and how the DAIs and widgets can be connected.

int get_control(u8 control_id,
struct gb_audio_control_element_value *value);
Returns the current value of the specified control.

int set_control(u8 control_id,
struct gb_audio_control_element_value *value);
Sets a control to the specified value.

int enable_widget(u8 widget_id);
Enables the specified widget.

int disable_widget(u8 widget_id);
Disables the specified widget.

int get_pcm(ul6 data_cport, u64 *format, u32 *rate, u8 *channels u8 sig bits);
Returns the current PCM values of the specified DAI.

int set_pcm(ul6 data_cport, u64 format, u32 rate, u8 channels u8 ig bits);
Sets the PCM values of the specified DAL

int set_tx._data_size(ul6 data_cport, ul6 size);
Sets the number of bytes in the audio data portion of Greybus audio messages going from the AP
Module to the Audio Module.

int get_tx_delay(ul6 data_cport, u32 *delay);
Returns the delay from the time the Audio Module receives the first Greybus Audio Messages until
the first sound can be heard in microseconds.

int activate_tx(ulé data_cport);
Requests that the Audio Module begin accepting Greybus audio messages and output them on the
configured audio widget.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 119

int deactivate_tx(ul6 data_cport);
Requests that the Audio Module stop accepting Greybus audio messages and stop outputting them on
the configured audio endpoint.

int set_rx data_size(ul6 data_cport, ul6 size);
Sets the number of bytes in the audio data portion of Greybus audio messages going from the Audio
Module to the AP Module.

int get_rx_delay(ul6 data_cport, u32 *delay);
Returns the delay from the time the Audio Module first receives a Activate RX Message until the first
Greybus audio message is sent in microseconds (given the current PCM and RX data size configuration).

int activate_rx(ulé data_cport);
Requests that the Audio Module begin capturing audio data and sending it to the AP Module.

int deactivate_rx(ul6é data_cport);
Requests that the Audio Module stop capturing audio data and sending it to the AP Module.

int jack-event(u8 widget_id, u8 widget_type, u8 *event);
Reports a jack related event to the AP Module.

int button_event(u8 widget_id, u8 button_id, u8 *event);
Reports a jack related event to the AP Module.

int streaming event(ul6 data_cport, u8 *event);
Reports a streaming related event to the AP Module.

int send data(u64 timestamp, u32 size, u8 *data);
Sends an integer number of audio samples over an Audio Data Connection.

Greybus Audio Management Message Types

Table 10.1 describes the Greybus audio operation types and their values. A message type consists of an
operation type combined with a flag (0x80) indicating whether the operation is a request or a response.

Greybus Audio CPort Shutdown Operation

The Greybus Audio CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the Audio Protocol.

Greybus Audio Get Topology Size Operation
The Greybus Audio Get Topology Size operation allows the requester to determine the number of bytes

required to hold the topology information structure returned by the Greybus Audio Get Topology Operation.
If this operation fails, no further operations related to Greybus Audio shall occur.

Greybus Audio Get Topology Size Request

The Greybus Audio Get Topology Size request message has no payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 120

Audio Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80
Reserved 0x01 0x81
Get Topology Size 0x02 0x82
Get Topology 0x03 0x83
Get Control 0x04 0x86
Set Control 0x05 0x87
Enable Widget 0x06 0x88
Disable Widget 0x07 0x89
Get PCM 0x08 0x84
Set PCM 0x09 0x85
Set TX Data Size 0x0a 0x8a
Get TX Delay 0x0b 0x8b
Activate TX 0x0c 0x8c
Deactivate TX 0x0d 0x8d
Set RX Data Size 0x0e 0x8e
Get RX Delay 0x0f 0x8f
Activate RX 0x10 0x90
Deactivate RX 0x11 0x91
Jack Event 0x12 0x92
Button Event 0x13 0x93
Streaming Event 0x14 0x94
Send Data 0x15 0x95
(all other values reserved) 0x16..0x7e 0x96..0xfe
Invalid 0x7f Oxff

Table 10.1: Audio Operation Types

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 121

Offset Field Size Value Description

0 size 2 Number Number of bytes of topology data

Table 10.2: Audio Get Topology Size Response

Offset Field Size Value Description

0 num_dais 1 Number Number of DAI structures

1 num_controls 1 Number Number of control structures

2 num_widgets 1 Number Number of widget structures

3 num_routes 1 Number Number of route structures

4 size_dais 4 Number Size of audio_dais

8 size_controls 4 Number Size of audio_controls

12 size_widgets 4 Number Size of audio_widgets

16 size_routes 4 Number Size of audio_routes

20 jack_type 4 Bit Mask Greybus Audio jack type Flag Bits
24 dai[1] 120 Structure Greybus Audio DAI Structure
120 Structure Greybus Audio DAI Structure
24+120%(1-1) dai[I] 120 Structure Greybus Audio DAI Structure
24+-size_dais control[1] XX Structure Greybus Audio Control Structure
XX Structure Greybus Audio Control Structure
24+size_dais+XX*(J-1) control[J] XX Structure Greybus Audio Control Structure
24+-size_dais+size_controls widget[1] YY Structure Greybus Audio Widget Structure
YY Structure Greybus Audio Widget Structure
24+size_dais+size_controls+YY*(K-1) widget[K] YY Structure Greybus Audio Widget Structure
24+-size_dais+size_controls+size_widgets route[1] Structure Greybus Audio Route Structure

4
4 Structure Greybus Audio Route Structure
4

24+size_dais+size_controls+size_widgets+4*(L-1) route[L] Structure Greybus Audio Route Structure

Table 10.3: Audio Get Topology Response

Greybus Audio Get Topology Size Response
Table 10.2 describes the Greybus Audio Get Topology Size response. The response payload contains a two-
byte value defining the number of bytes in the topology information structure returned by Greybus Audio

Get Topology Operation. If the value returned is 0 no further operations related to Greybus Audio shall
follow.

Greybus Audio Get Topology Operation

The Greybus Audio Get Topology operation allows the requester to retrieve audio topology information from
an Audio Module. If this operation fails, no further operations related to Greybus Audio shall occur.

Greybus Audio Get Topology Request

The Greybus Audio Get Topology request message has no payload.

Greybus Audio Get Topology Response

Table 10.3 describes the Greybus Audio Get Topology response. The response payload contains a set of
fixed size fields and a variable number of DAI, control, widget, and route structures.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

122

Symbol Brief Description Mask Value
GB_AUDIO_JACK_HEADPHONE Headphone 0x0000001
GB_AUDIO_JACK_MICROPHONE Mic 0x0000002
GB_AUDIO_JACK_HEADSET Headphone+Mic 0x0000003
GB_AUDIO_JACK_LINEOUT Lineout 0x0000004
GB_AUDIO_JACK_-MECHANICAL Mechanical jack 0x0000008
GB_AUDIO_JACK_VIDEOOUT Videoout 0x0000010
GB_AUDIO_JACK_AVOUT Lineout+Videoout 0x0000014
GB_AUDIO_JACK_LINEIN Lineln 0x0000020
GB_AUDIO_JACK_OC_HPHL HPHL 0x0000040
GB_AUDIO_JACK_OC_HPHR HPHR 0x0000080
GB_AUDIO_JACK_MICROPHONE2 Mic2 0x0000200
GB_AUDIO_JACK_ANC_HEADPHONE Headphone+Mic+Mic2 0x0000203
GB_AUDIO_JACK_BTN_0 Media key 0x4000000
GB_AUDIO_JACK_BTN_1 Voicecommand key 0x2000000
GB_AUDIO_JACK_BTN_2 Volumeup key 0x1000000
GB_AUDIO_JACK_BTN_3 Volumedown key 0x0800000

Table 10.4: Audio Jack type Flag Bits

Offset Field Size Value Description

0 name 32 UTF-8 DATI Name

32 cport 2 Number CPort for DAI Data Connection
34 capture 43 Structure Greybus Audio PCM Structure
77 playback 43 Structure Greybus Audio PCM Structure

Table 10.5: Audio DAI Structure

Greybus Audio jack type Flag Bits

Table 10.4 describes the audio jack types.

Greybus Audio DAI Structure

Table 10.5 describes the structure containing DAT information for Audio Modules.

Greybus Audio PCM Structure

Table 10.6 describes the structure containing PCM information for Audio Modules.

Offset Field Size Value Description

0 stream_name 32 UTF-8 Stream Name

32 formats 4 Bit Mask Greybus Audio Format Flags Bits
36 rates 4 Bit Mask Greybus Audio Rate Flags Bits
40 chan_min 1 Number Minimum number of channels

41 chan_max 1 Number Maximum number of channels

42 sig_bits 1 Number Number of bits of content

Table 10.6: Audio PCM Structure

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

123

Symbol Brief Description Mask Value
GB_AUDIO_PCM_FMT_S8 Eight bit signed PCM data 0x00000001
GB_AUDIO_PCM_FMT_U8 Eight bit unsigned PCM data 0x00000002
GB_AUDIO_PCM_FMT_S16_LE Sixteen bit signed PCM data, little endian 0x00000004
GB_AUDIO_PCM_FMT_U16_LE Sixteen bit unsigned PCM data, little endian 0x00000008
GB_AUDIO_PCM_FMT_S16_BE Sixteen bit signed PCM data, big endian 0x00000010
GB_AUDIO_PCM_FMT_U16_BE Sixteen bit unsigned PCM data, big endian 0x00000020
GB_AUDIO_PCM_FMT_S24 LE Twenty-four bit signed PCM data, little endian 0x00000040
GB_AUDIO_PCM_FMT_U24_ LE Twenty-four bit unsigned PCM data, little endian 0x00000080
GB_AUDIO_PCM_FMT_S24 BE Twenty-four bit signed PCM data, big endian 0x00000100
GB_AUDIO_PCM_FMT_U24 BE Twenty-four bit unsigned PCM data, big endian 0x00000200
GB_AUDIO_PCM_FMT_S32_LE Thirty-two bit signed PCM data, little endian 0x00000400
GB_AUDIO_PCM_FMT_U32_LE Thirty-two bit unsigned PCM data, little endian 0x00000800
GB_AUDIO_PCM_FMT_S32.BE Thirty-two bit signed PCM data, big endian 0x00001000
GB_AUDIO_PCM_FMT_U32_BE Thirty-two bit unsigned PCM data, big endian 0x00002000
Table 10.7: Audio Format Flag Bits
Symbol Brief Description Mask Value
GB_AUDIO_PCM_RATE_5512 5512 samples per second 0x00000001
GB_AUDIO_PCM_RATE_8000 8000 samples per second 0x00000002
GB_AUDIO_PCM_RATE_11025 11025 samples per second 0x00000004
GB_AUDIO_PCM_RATE_16000 16000 samples per second 0x00000008
GB_AUDIO_PCM_RATE_22050 22050 samples per second 0x00000010
GB_AUDIO_PCM_RATE_32000 32000 samples per second 0x00000020
GB_AUDIO_PCM_RATE_44100 44100 samples per second 0x00000040
GB_AUDIO_PCM_RATE 48000 48000 samples per second 0x00000080
GB_AUDIO_PCM_RATE_64000 64000 samples per second 0x00000100
GB_AUDIO_PCM_RATE_88200 88200 samples per second 0x00000200
GB_AUDIO_PCM_RATE_96000 96000 samples per second 0x00000400
GB_AUDIO_PCM_RATE_176400 176400 samples per second 0x00000800
GB_AUDIO_PCM_RATE_192000 192000 samples per second 0x00001000

Table 10.8: Audio Rate Flag Bits

Greybus Audio Format Flags Bits

Table 10.7 describes the audio data formats.

Greybus Audio Rate Flags Bits

Table 10.8 describes the audio data rates.

Greybus Audio Control Structure

Table 10.9 describes the structure containing control information for Audio Modules.

Greybus Audio Control Iface Type

Table 10.10 describes the audio control interface type.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

124

Offset Field Size Value Description

0 name 32 UTF-8 Control Name

32 id 1 Number Control ID

33 iface 1 Number Greybus Audio Control Iface Type

34 data_cport 2 Number Data CPort

36 access 4 Bit Mask Greybus Audio Control Access Rights Flags

40 count 1 Number Number of elements of this type

41 count_values 1 Number Number of values (max=2, L/R)

42 info XX Structure Greybus Audio Control Element Info Structure

Table 10.9: Audio Control Structure

Symbol Brief Description Mask Value
GB_AUDIO_IFACE_CARD Global control 0x01
GB_AUDIO_IFACE_HWDEP Hardware depedent device 0x02
GB_AUDIO_IFACE_MIXER Mixer device 0x03
GB_AUDIO_IFACE_PCM PCM device 0x04
GB_AUDIO_IFACE_RAWMIDI Raw MIDI device 0x05
GB_AUDIO_IFACE_TIMER Timer device 0x06
GB_AUDIO_IFACE_SEQUENCER Sequencer device 0x07

Table 10.10: Audio Control Interface Type

Greybus Audio Control Access Rights Flags

Table 10.11 describes the audio control access rights.

Greybus Audio Control Element Info Structure

Table 10.12 describes the structure containing control element information for Audio Modules.

Greybus Audio Control Element Type

Table 10.13 describes the audio control element type.

Greybus Audio Control Element Value Range Union

Table 10.14 describes the union containing control element value ranges for Audio Modules.

Greybus Audio Control Element Integer Value Range Structure

Table 10.15 describes the structure containing a control element integer value range for Audio Modules.

Symbol Brief Description ~ Mask Value
GB_AUDIO_ACCESS_READ Read access 0x01
GB_AUDIO_ACCESS_WRITE Write access 0x02

Table 10.11: Audio Control Access Rights Flag Bits

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

125

Offset Field Size Value Description

0 type 1 Bit Mask Greybus Audio Control Element Type

1 dimen[1] 2 Number First dimension

2 Number .

7 dimenl[4] 2 Number Fourth dimension

9 value XX Union Greybus Audio Control Element Value Range Union

Table 10.12: Audio Control Element Info Structure

Symbol Brief Description Mask Value
GB_AUDIO_CTL_ELEM_TYPE_BOOLEAN Boolean 0x01
GB_AUDIO_CTL_ELEM_TYPE_INTEGER 32-bit Integer 0x02
GB_AUDIO_CTL_ELEM_TYPE_ENUMERATED Enumerated type 0x03
GB_AUDIO_CTL_ELEM_TYPE_INTEGER64 64-bit Integer 0x06

Table 10.13: Audio Control Elemente Type

Description

Offset Field Size Value

0 integer 12 Structure
0 integer64 24 Structure
0 enumerated xxx Structure

Greybus Audio Control Element Integer Value Range Structure

Greybus Audio Control Element Integer64 Value Range Structure
Greybus Audio Control Element Enumerated Value Range Structure

Table 10.14: Audio Control Element Value Range Union

Offset Field Size Value Description

0 min 4 Number Minimum value

4 max 4 Number Maximum value

8 step 4 Number Increment amount

Table 10.15: Audio Control Element Integer Value Range Structure

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 126

Offset Field Size Value Description

0 min 8 Number Minimum value
8 max 8 Number Maximum value
16 step 8 Number Increment amount

Table 10.16: Audio Control Element Integer64 Value Range Structure

Offset Field Size Value Description

0 items 4 Number Number of items

4 names_length 2 Number Length of names field

6 names XX UTF-8 Enumerated type names

Table 10.17: Audio Control Element Enumerated Value Range Structure

Greybus Audio Control Element Integer64 Value Range Structure

Table 10.16 describes the structure containing a control element integer64 value for range Audio Modules.

Greybus Audio Control Element Enumerated Value Range Structure

Table 10.17 describes the structure containing a control element enumerated value for range Audio Modules.

Greybus Audio Widget Structure

Table 10.18 describes the structure containing widget information for Audio Modules.

Greybus Audio Widget Type

Table 10.19 describes the audio widget type.

Greybus Audio Widget State

Table 10.20 describes the audio widget state.

Offset Field Size Value Description

0 name 32 UTF-8 Widget Name

32 name 32 UTF-8 Widget Stream Name

64 id 1 Number Widget ID

65 type 1 Number Greybus Audio Widget Type

66 state 1 Number Greybus Audio Widget State

67 ncontrols 1 Number Number of widget controls

68 ctl XX Structure Greybus Audio Control Structure

Table 10.18: Audio Widget Structure

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 127

Widget Type Value
Invalid 0x00
GB_AUDIO_WIDGET_TYPE_INPUT 0x01
GB_AUDIO_WIDGET_TYPE_OUTPUT 0x02
GB_AUDIO_WIDGET_TYPE_MUX 0x03
GB_AUDIO_WIDGET_TYPE_VIRT _MUX 0x04
GB_AUDIO_WIDGET_TYPE_VALUE_MUX 0x05
GB_AUDIO_WIDGET_TYPE_MIXER 0x06
GB_AUDIO_WIDGET_TYPE_MIXER_NAMED_CTL 0x07
GB_AUDIO_WIDGET_TYPE_PGA 0x08
GB_AUDIO_WIDGET_TYPE_OUT_DRV 0x09
GB_AUDIO_WIDGET_TYPE_ADC 0x0a
GB_AUDIO_WIDGET_TYPE_DAC 0x0b
GB_AUDIO_WIDGET_TYPE_MICBIAS 0x0c
GB_AUDIO_WIDGET_TYPE_MIC 0x0d
GB_AUDIO_WIDGET_TYPE_HP 0x0e
GB_AUDIO_WIDGET_TYPE_SPK 0x0f
GB_AUDIO_WIDGET_TYPE_LINE 0x10
GB_AUDIO_WIDGET_TYPE_SWITCH 0x11
GB_AUDIO_WIDGET_TYPE_VMID 0x12
GB_AUDIO_WIDGET_TYPE_PRE 0x13
GB_AUDIO_WIDGET_TYPE_POST 0x14
GB_AUDIO_WIDGET_TYPE_SUPPLY 0x15
GB_AUDIO_WIDGET_TYPE_REGULATOR_SUPPLY 0x16
GB_AUDIO_WIDGET_TYPE_CLOCK_SUPPLY 0x17
GB_AUDIO_WIDGET_TYPE_AIF_IN 0x18
GB_AUDIO_WIDGET_TYPE_AIF_OUT 0x19
GB_AUDIO_WIDGET_TYPE_SIGGEN Oxla
GB_AUDIO_WIDGET_TYPE_DAI IN 0x1b
GB_AUDIO_WIDGET_TYPE_DAI.OUT Oxlc
GB_AUDIO_WIDGET_TYPE_DAI LINK Ox1d

Table 10.19: Audio Widget Type

Widget State Value

Invalid 0x00
GB_AUDIO_WIDGET_STATE_DISABLED 0x01
GB_AUDIO_WIDGET_STATE_ENABLED 0x02

Table 10.20: Audio Widget State

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 128

Offset Field Size Value Description

0 source_id 1 Number ID of source widget

1 destination_id 1 Number ID of destination widget

2 control_id 1 Number Control ID

3 index 1 Number Index within the [enumerated] control

Table 10.21: Audio Route Structure

Offset Field Size Value Description
0 control_id 1 Number Control ID
1 index 1 Number Index

Table 10.22: Audio Get Control Request

Greybus Audio Route Structure

Table 10.21 describes the structure containing route information for Audio Modules.

Greybus Audio Get Control Operation

The Greybus Audio Get Control operation allows the requester to retrieve the current value of an audio
control from an Audio Module.

Greybus Audio Get Control Request

Table 10.22 describes the Greybus Audio Get Control request. The request contains a one-byte control ID
which uniquely identifies the audio control.

Greybus Audio Get Control Response

Table 10.23 describes the Greybus Audio Get Control response. The response payload contains a four-byte
value specifying the current value for a control.

Greybus Audio Control Element Value Structure

Table 10.24 describes the structure containing control element identification and values for Audio Modules.

Greybus Audio Control Element Value Union

Table 10.25 describes the union containing control element values for Audio Modules.

Offset Field Size Value Description

0 value 63 Structure Greybus Audio Control Element Value Structure

Table 10.23: Audio Get Control Response

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 129

Offset Field Size Value Description
0 timestamp 8 Number Timestamp
8 value 8 Union Greybus Audio Control Element Value Union

Table 10.24: Audio Control Element Value Structure

Offset Field Size Value Description

0 integer 8 Number The 32-bit integer value

0 integer64 16 ~ Number The 64-bit integer value

0 enumerated 8 Number Enumerated type item index

Table 10.25: Audio Control Element Value Union

Greybus Audio Set Control Operation

The Greybus Audio Set Control operation allows the requester to set the current value of an audio control
on an Audio Module.

Greybus Audio Set Control Request

Table 10.26 describes the Greybus Audio Set Control request. The request contains a one-byte control ID
which uniquely identifies the audio control and a 63-byte structure that specifies the new value.

Greybus Audio Set Control Response

The Greybus Audio Set Control response has no payload.

Greybus Audio Enable Widget Operation

The Greybus Audio Enable Widget operation allows the requester to enable a widget on an Audio Module.

Greybus Audio Enable Widget Request

Table 10.27 describes the Greybus Audio Enable Widget request. The request supplies the widget_id which
uniquely identifies the widget.

Greybus Audio Enable Widget Response

The Greybus Audio Enable Widget response has no payload.

Offset Field Size Value Description

0 control_id 1 Number Control ID

1 index 1 Number Index

2 value 63 Structure Greybus Audio Control Element Value Structure

Table 10.26: Audio Set Control Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 130

Offset Field Size Value Description
0 widget_id 1 Number Widget Id

Table 10.27: Audio Enable Widget Request

Offset Field Size Value Description
0 widget_id 1 Number Widget Id

Table 10.28: Audio Disable Widget Request

Greybus Audio Disable Widget Operation

The Greybus Audio Disable Widget operation allows the requester to disable a widget on an Audio Module.

Greybus Audio Disable Widget Request

Table 10.28 describes the Greybus Audio Disable Widget request. The request supplies the widget_id which
uniquely identifies the widget.

Greybus Audio Disable Widget Response

The Greybus Audio Disable Widget response has no payload.

Greybus Audio Get PCM Operation

The Greybus Audio Get PCM operation allows the requester to retrieve the current audio PCM settings
from an Audio Module.

Greybus Audio Get PCM Request

Table 10.29 describes the Greybus Audio Get PCM request. The request supplies the DAI CPort which
uniquely identifies the DAI whose configuration is being queried.

Greybus Audio Get PCM Response

Table 10.30 describes the Greybus Audio Get PCM response. The response payload contains a four-byte
value specifying the current PCM format, a four-byte value specifying the current sampling rate, a one-byte
value specifying the number of audio channels, and a one-byte value specifying the number of significant bits
of audio data in each channel.

Offset Field Size Value Description
0 data_cport 2 Number Data CPort

Table 10.29: Audio Get PCM Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 131

Offset Field Size Value Description

0 format 4 Bit mask Greybus Audio Format Flags Bits
4 rate 4 Bit mask Greybus Audio Rate Flags Bits

8 channels 1 Number Number of audio channels

9 sig_bits 1 Number Number of significant bits of data

Table 10.30: Audio Get PCM Response

Offset Field Size Value Description

0 data_cport 2 Number Data CPort

2 format 4 Bit mask Greybus Audio Format Flags Bits
6 rate 4 Bit mask Greybus Audio Rate Flags Bits
10 channels 1 Number Number of audio channels

11 sig_bits 1 Number Number of significant bits of data

Table 10.31: Audio Set PCM Request

Greybus Audio Set PCM Operation

The Greybus Audio Set PCM operation allows the requester to set the current audio PCM settings on an
Audio Module.

Greybus Audio Set PCM Request

Table 10.31 describes the Greybus Audio Set PCM request. The request supplies the DAI CPort which
uniquely identifies the DAI whose configuration is being set.

Greybus Audio Set PCM Response

The Greybus Audio Set PCM response has no payload.

Greybus Audio Set TX Data Size Operation

The Greybus Audio Set TX Data Size operation allows the requester to set the number of bytes of audio
data contained in a Greybus Audio Send Data Operation going from the AP Module to an Audio Module.

Greybus Audio Set TX Data Size Request

Table 10.32 describes the Greybus Audio Set TX Data Size request. The request supplies the DAI CPort,
which uniquely identifies the DAI, and the number of bytes of audio data that shall be contained in a Greybus
Audio Send Data Operation. The size shall be an integer multiple of the number of bytes in a complete
audio sample (i.e., number of bytes per channel times the number of channels).

Offset Field Size Value Description
0 data_cport 2 Number Data CPort
2 size 2 Number Number of audio data bytes

Table 10.32: Audio Set TX Data Size Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 132

Offset Field Size Value Description
0 data_cport 2 Number Data CPort

Table 10.33: Audio Get TX Delay Request

Offset Field Size Value Description

0 delay 4 Number Delay in microseconds

Table 10.34: Audio Get TX Delay Response

Greybus Audio Set TX Data Size Response

The Greybus Audio Set TX Data Size response has no payload.

Greybus Audio Get TX Delay Operation
The Greybus Audio Get TX Delay operation allows the requester to retrieve the amount of time the module

requires from when the first Greybus Audio Send Data Operation is received until the first audio sample
contained in that message is audible. The delay value is in microseconds.

Greybus Audio Get TX Delay Request

Table 10.33 describes the Greybus Audio Get TX Delay request. The request supplies the DAI CPort which
uniquely identifies the DAI.

Greybus Audio Get TX Delay Response

Table 10.34 describes the Greybus Audio Get TX Delay response. The response payload contains a four-byte
unsigned value specifying the amount of time the module requires from when the first Greybus Audio Send
Data Operation is received until the first audio sample contained in that message is audible. The delay value
is in microseconds.

Greybus Audio Activate TX Operation
The Greybus Audio Activate TX operation requests that the Audio Module prepare to receive audio data

on the specified Audio Data Connection. The audio data shall be output using an audio output device (e.g.,
speaker).

Greybus Audio Activate TX Request

Table 10.35 describes the Greybus Audio Activate TX request. The request supplies the DAI CPort which
uniquely identifies the DAI.

Offset Field Size Value Description
0 data_cport 2 Number Data CPort

Table 10.35: Audio Activate TX Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 133

Offset Field Size Value Description
0 data_cport 2 Number Data CPort

Table 10.36: Audio Deactivate TX Request

Offset Field Size Value Description
0 data_cport 2 Number Data CPort
2 size 2 Number Number of audio data bytes

Table 10.37: Audio Set RX Data Size Request

Greybus Audio Activate TX Response

The Greybus Audio Activate TX response has no payload.

Greybus Audio Deactivate TX Operation
The Greybus Audio Deactivate TX operation requests that the AP Module no longer accept audio data on

the specified CPort. The AP Module may free any resources allocated by the corresponding Greybus Audio
Activate TX Operation. Any audio data received on a deactivated Audio Data Connection shall be ignored.

Greybus Audio Deactivate TX Request

Table 10.36 describes the Greybus Audio Deactivate TX request. The request supplies the DAI CPort which
uniquely identifies the DAI.

Greybus Audio Deactivate TX Response

The Greybus Audio Deactivate TX response has no payload.

Greybus Audio Set RX Data Size Operation

The Greybus Audio Set RX Data Size operation allows the requester to set the number of bytes of audio
data contained in a Greybus Audio Send Data Operation going from an Audio Module to the AP Module.

Greybus Audio Set RX Data Size Request
Table 10.37 describes the Greybus Audio Set RX Data Size request. The request supplies the DAI CPort,
which uniquely identifies the DAI, and the number of bytes of audio data that shall be contained in a Greybus

Audio Send Data Operation. The size shall be an integer multiple of the number of bytes in a complete
audio sample (i.e., number of bytes per channel times the number of channels).

Greybus Audio Set RX Data Size Response

The Greybus Audio Set RX Data Size response has no payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 134

Offset Field Size Value Description
0 data_cport 2 Number Data CPort

Table 10.38: Audio Get RX Delay Request

Offset Field Size Value Description

0 delay 4 Number Delay in microseconds

Table 10.39: Audio Get RX Delay Response

Greybus Audio Get RX Delay Operation
The Greybus Audio Get RX Delay operation allows the requester to retrieve the amount of time the module

requires from when the receive function is activated until the first Greybus Audio Send Data Operation is
sent. The delay value is in microseconds.

Greybus Audio Get RX Delay Request

Table 10.38 describes the Greybus Audio Get RX Delay request. The request supplies the DAI CPort which
uniquely identifies the DAI.

Greybus Audio Get RX Delay Response
Table 10.39 describes the Greybus Audio Get RX Delay response. The response payload contains a four-byte
unsigned value specifying the amount of time the module requires from when the receive function is activated

until the first Greybus Audio Send Data Operation is sent in the current configuration. The delay value is
in microseconds.

Greybus Audio Activate RX Operation

The Greybus Audio Activate RX operation requests that the Audio Module begin capturing audio data and
sending it to the AP Modules using the specified CPort.

Greybus Audio Activate RX Request

Table 10.40 describes the Greybus Audio Activate RX request. The request supplies the DAT CPort which
uniquely identifies the DAI.

Greybus Audio Activate RX Response

The Greybus Audio Activate RX response has no payload.

Offset Field Size Value Description
0 data_cport 2 Number Data CPort

Table 10.40: Audio Activate RX Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 135

Offset Field Size Value Description
0 data_cport 2 Number Data CPort

Table 10.41: Audio Deactivate RX Request

Offset Field Size Value Description
0 widget_id 1 Number Widget ID
1 type 1 Number Greybus Audio Widget Type
2 event 1 Number Greybus Audio Jack Events

Table 10.42: Audio Jack Event Request

Greybus Audio Deactivate RX Operation
The Greybus Audio Deactivate RX operation requests that the Audio Module stop capturing audio data

and sending it to the AP Module. The AP Module may free any resources allocated by the corresponding
Greybus Audio Activate RX Operation.

Greybus Audio Deactivate RX Request

Table 10.41 describes the Greybus Audio Deactivate RX request. The request supplies the DAT CPort which
uniquely identifies the DAI.

Greybus Audio Deactivate RX Response

The Greybus Audio Deactivate RX response has no payload.

Greybus Audio Jack Event Operation

The Greybus Audio Jack Event operation allows the requester to notify the AP Module of audio jack events.

Greybus Audio Jack Event Request

Table 10.42 defines the Greybus Audio Jack Event Request. The request supplies a one-byte widget ID, a
one-byte widget type, and the one-byte event being reported.

Greybus Audio Jack Events

Table 10.43 defines the Greybus Audio audio jack events and their values.

Symbol Brief Description Value

GB_AUDIO_JACK_EVENT_INSERTION Device inserted into jack 0x01
GB_AUDIO_JACK_EVENT_REMOVAL Device removed from jack 0x02

Table 10.43: Audio Events

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 136

Offset Field Size Value Description
0 widget_id 1 Number Widget ID
1 button_id 1 Number Button ID
2 event 1 Number Greybus Audio Button Events

Table 10.44: Audio Button Event Request

Symbol Brief Description Value

GB_AUDIO_BUTTON_EVENT_PRESS Button was pressed 0x01
GB_AUDIO_BUTTON_EVENT_RELEASE Button was released 0x02

Table 10.45: Audio Events

Greybus Audio Jack Event Response

The Greybus Audio Jack Event response message has no payload.

Greybus Audio Button Event Operation

The Greybus Audio Button Event operation allows the requester to notify the AP Module of audio button
events.

Greybus Audio Button Event Request

Table 10.44 defines the Greybus Audio Button Event Request. The request supplies a one-byte widget 1D,
a one-byte button ID, and the one-byte button event being reported.

Greybus Audio Button Events

Table 10.45 defines the Greybus Audio audio button events and their values.

Greybus Audio Button Event Response

The Greybus Audio Button Event response message has no payload.

Greybus Audio Streaming Event Operation

The Greybus Audio Streaming Event operation allows the requester to notify the AP Module of audio
streaming events.

Greybus Audio Streaming Event Request

Table 10.46 defines the Greybus Audio Streaming Event Request. The request supplies the DAI CPort,
which uniquely identifies the DAI, and the one-byte event being reported.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

137

Offset Field Size Value Description
0 data_cport 2 Number Data CPort
2 event 1 Number Greybus Audio Streaming Events

Table 10.46: Audio Streaming Event Request

Symbol Brief Description Value
GB_AUDIO_STREAMING_EVENT_UNSPECIFIED Catch-all for events not in this table 0x01
GB_AUDIO_STREAMING_EVENT_HALT Streaming has halted 0x02
GB_AUDIO_STREAMING_EVENT_INTERNAL_ERROR Internal error that should never happen 0x03
GB_AUDIO_STREAMING_EVENT_PROTOCOL_ERROR Incorrect Operation order, etc. 0x04
GB_AUDIO_STREAMING_EVENT _FAILURE Operation failed 0x05
GB_AUDIO_STREAMING_EVENT_UNDERRUN No data to send 0x06
GB_AUDIO_STREAMING_EVENT_OVERRUN Flooded by data 0x07
GB_AUDIO_STREAMING_EVENT_CLOCKING Low-level clocking issue 0x08
GB_AUDIO_.STREAMING_EVENT_DATA_LEN Invalid message data length 0x09

Table 10.47: Audio Events

Greybus Audio Streaming Events

Table 10.47 defines the Greybus Audio audio streaming events and their values.

Greybus Audio Streaming Event Response

The Greybus Audio Streaming Event response message has no payload.

Greybus Audio Send Data Operation

The Greybus Audio Send Data Operation sends audio data over a Greybus Audio Data Connection. No

response message shall be sent.

Greybus Audio Send Data Request

Table 10.48 Greybus Audio Send Data Request sends one or more complete audio samples. The size of the
audio data is shall match the value specified in the most recent Greybus Audio Set RX Data Size Operation.

It is a protocol error to send this message without first setting the data size.

Greybus Audio Send Data Response

There shall be no response message for the Greybus Audio send data request.

Offset Field Size Value Description
0 timestamp 8 Number Time that audio sample is to be output
8 data size Data Audio data

Table 10.48: Audio Protocol Send Data Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 138

Camera Protocol

System Architecture (Informative)

The Greybus Camera Device Class Protocol defines how Camera Modules communicate with AP Modules
in a Greybus System.

MIPT has specified two interface protocols for camera integration relevant for Greybus Systems, CSI-2 and
CSI-3. CSI-2 is a high-speed point-to-point unidirectional data transfer protocol. It defines an interface
between a camera peripheral device and a host processor. CSI-2 usage is widespread in the mobile industry
and is natively supported by most mobile Application Processors.

CSI-3 is a high-speed bidirectional communication protocol for camera systems. Based on UniPro, it specifies
communication between camera sensors, image signal processors, bridge devices and host processors. The
Greybus Camera Device Class Specification currently does not support CSI-3 devices within Modules.

The current Greybus Camera Device Class Protocol assumes that the AP Module and any Camera Modules in
the system tunnel CSI-2 protocol data through the UniPro switch using the UniPro Bridge vendor proprietary
protocol.

The Camera AP Bridge encapsulates the CSI-2 stream received from the camera into packets and sends them
on the UniPro network. On the receiving side the Application Processor AP Bridge extracts the stream and
outputs it over CSI-2 to the application processor.

The Greybus Camera Device Class Protocol describes transmission of image frames on the Greybus Camera
Device Class Data Connections in terms of the CSI-2 interface on each side of the CSI-2 over UniPro tunnel.
Control messages exchanged over UniPro outside of this are be described in terms of Greybus Camera
Management Operations as for all other Greybus Device Class Protocols.

The specific protocol used to communicate between the Camera AP Bridge and the components internal to
the Camera Module is considered to be implementation-specific and outside the scope of this document.

Connection

Camera Bundle

Camera Modules shall have at least one Greybus Interface that contains a Camera Bundle. The Camera
Bundle, whose class is specified in Table 6.8, shall contain exactly two CPorts referred to as the Camera
Management CPort and the Camera Data CPort. Protocol numbers assigned to these CPorts are specified
in Table 6.10.

Camera Management Connection

A Camera Interface is configured and managed via its Camera Management Connection, which exchanges
Operations defined by the Camera Management Protocol.

Camera Data Connection

Transmission of image data streams shall happen over a single CSI-2 port, through the Camera Data Con-
nection, where CSI-2 packet transfer is implemented using the UniPro AP Bridge vendor proprietary CSI-2
encapsulation protocol.

The Camera Module may select the number of CSI-2 data lanes to setup between its CSI-2 transmitter and
the AP Bridge CSI-2 receiver up to a maximum of four lanes.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 139

Communications

Camera Management Protocol

The Camera Management Protocol is implemented by a set of Camera Management Operations, split in
three categories:

e The Video Setup Operations, which handle capability enumeration and generally any retrieval of
information from the Camera Interface, for the purpose of initializing the peer. Currently, the only
defined Video Setup Operation is the Greybus Camera Management Capabilities Operation.

e The Video Streaming Operations, which control the video streams and their parameters such as image
resolution and image format. Currently, the two defined video streaming Operations are the Greybus
Camera Management Configure Streams Operation and Greybus Camera Flush Streams Operation.

e The Image Processing Operations, which control all the Camera Module image capture and processing
algorithms and their parameters. Currently, the only defined image processing Operation is the Greybus
Camera Management Capture Streams Operation.

Camera Modules shall implement all the Operations defined in this specification.

When explicitly allowed, Camera Modules may freely select implementation options but shall ensure that
the options are compatible with each other as mandated by this specification, and shall report the selected
options through capabilities.

Image Data Transmission

All Camera Modules shall support transmission of one video stream over CSI-2. Additionally, Camera
Modules may support additional concurrent video streams, for instance, to transmit still images or auxiliary
channels such as depth maps or resized images.

Camera Modules shall transmit all streams multiplexed over a single CSI-2 port and a single Virtual Channel
using the Data Type Interleaving method defined by CSI-2. The Camera Module shall use Packet Level
Interleaving as defined in section 9.13.1 of [CSI-2].

Metadata Transmission

Metadata is defined as data other than image content that relates to a particular image frame. Metadata is
used by Camera Modules to inform the image receiver about the characteristics of the transmitted frames,
and the applied capture settings.

Metadata support is optional. However, when supported, it shall be implemented according to this specifi-
cation.

The Greybus Camera Device Class Protocol defines two transport methods for metadata:

e using the Greybus Camera Metadata Streams Operation explicitly, through the Camera Management
Connection.

e sending metadata along with image frames over the CSI-2 interface, through the Camera Data Con-
nection.

Whenever possible, Camera Modules should use the CSI-2 transport to deliver metadata.

Camera Modules may implement neither, one or both of these transport methods. The supported methods
shall be reported through the Greybus Camera Management Capabilities Operation

Camera Modules that support metadata transmission shall implement the CSI-2 frame number counter for
all streams that can generate metadata.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 140

CSI-2 Transport

When transmitting metadata over CSI-2, the Camera Module shall send the metadata using the same Virtual
Channel number as the image frames and set the Data Type to User Defined 8-bit Data Type 8 (0x37).

Camera Modules should encode metadata using the properties and serialization format defined in the Greybus
Camera Properties section of Greybus Camera Device Class specifications.

However, when this isnt possible or practical (for instance, when the Module hardware dictates the metadata
format), Modules may choose to encode metadata using a custom method for metadata transmitted over
CSI-2.

Metadata transmitted over CSI-2 using a custom encoding shall at minimum contain the ID of the associated
request.

Metadata Operation

When transmitting metadata through the dedicated Operation, the Camera Module shall send a single
Greybus Camera Metadata Streams Operation Request per image frame.

Metadata transmitted over Camera Management Connection using the Greybus Camera Metadata Streams
Operation Request shall always be encoded as specified in the Greybus Camera Properties section of this
specification.

Operational Model

Figure 10.1 describes the operational model of a Greybus Camera Bundle.

Upon a Greybus Control Connected Operation, that notifies the Camera Interface that a Connection to its
Camera Management CPort has been successfully established, the Greybus Camera Device Class Protocol
state machine is entered, in the UNCONFIGURED state.

The Camera Device Class state machine is exited when the Camera Management Connection is closed, either
as notified by a Greybus Control Disconnected Operation referring to the Camera Management CPort, or as
a consequence of forced removal.

The Greybus Camera Device Class state machine has 3 states: UNCONFIGURED, CONFIGURED, and
STREAMING. Certain Operations are only valid in specific states, but the Greybus Camera Management
Capabilities Operation may be used in any state, and shall always return the same set of camera capabilities.

The states that define the Camera Device Class state machine are:

¢ UNCONFIGURED: In this state the Camera Management Connection is operational. The state
transitions to CONFIGURED state happens upon receipt of a Greybus Camera Configure Streams
Operation Request if the following conditions are respected:

— The Configure Streams Operation return GB_SUCCESS;

— The Configure Streams Request does not contain any flag that explicitly require the Module to
remain in UNCONFIGURED state;

— The Module fully support the requested streams configuration;

¢ CONFIGURED: In this state the Bundle shall be ready to process Greybus Camera Management
Capture Streams Request immediately as it receives them and then move to STREAMING state.
Reception of a Greybus Camera Configure Streams Operation Request with a zero stream count returns
the Bundle to the UNCONFIGURED state.

¢ STREAMING: In this state the Bundle transmits video frames in UniPro Messages encapsulating
CSI-2 packets, sent over the Greybus Camera Device Class Data Connection. Greybus Capture Stream
Requests can be queued, and once there are no active or queued Requests, the Bundle moves back to

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 141

configure streami(n)

ush()

capture()

flush() /

mpty Capture request queue

capture()

(STREAMING 5 >

Figure 10.1: Operational State Machine of a Greybus Camera Bundle

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 142

Camera Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80

Reserved 0x01 0x81
Capabilities 0x02 0x82
Configure Streams 0x03 0x83

Capture 0x04 0x84

Flush 0x05 0x85
Metadata 0x06 N/A

(all other values reserved) 0x07..0x7f 0x87..0xff

Table 10.49: Camera Device Class operations

CONFIGURED state. Reception of a Greybus Camera Flush Streams Operation Request clears the
queue of pending capture requests and also moves the Bundle to the CONFIGURED state.

Greybus Camera Management Protocol

Conceptually, the Operations in the Greybus Camera Management Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int capabilities(u8 *capabilities);
Retrieve the list of camera capabilities.

int configure streams(u8 num streams, u8 *flags, struct stream config *streams);
Prepares for or halts video streams.

int capture(u32 request_id, u8 streams, ul6 num frames, const u8 *settings, ul6 size);
Enqueue a frame capture request.

int flush(u32 *request_id);
Removes all capture requests from the request queue.

void metadata(u8 *metadata);
Send image metadata to the AP.

All the above Operations shall be initiated by the AP Module, except for the Greybus Camera Metadata
Streams Operation which is, instead, initiated by the Camera Module.

Greybus Camera Management Message Types

Table 10.49 describes the Greybus Camera Management Message Types and their values.

Greybus Camera Management CPort Shutdown Operation

The Greybus Camera Management CPort Shutdown Operation is the Common Greybus Protocol CPort
Shutdown Operation for the Camera Management Protocol.

Greybus Camera Management Capabilities Operation

To allow support for various features and levels of complexity, the Greybus Camera Device Class defines
optional features, which may be implemented by Camera Bundles.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 143

Offset Field Size Value Description

0 capabilities n Data Capabilities of Camera Module

Table 10.50: Camera Class Capabilities response

Using this Operation the sender can dynamically query the Camera Module for its capabilities.

Once the Camera Management Connection has been set up, the Camera Module shall respond to all Camera
Management Capabilities Requests with the same set of capabilities. The Interface shall ensure identical
capabilities are available as long as its Interface Lifecycle State remains ENUMERATED.

Greybus Camera Management Capabilities Request

The Greybus Camera Management Capabilities Request has no payload.

Greybus Camera Management Capabilities Response

The Greybus Camera Management Capabilities Response contains a variable-size capabilities block that
shall conform to the format described in the Greybus Camera Properties section of this specification.

The Response payload is shown in Table 10.50.

Greybus Camera Management Configure Streams Operation

The Greybus Camera Management Configure Streams Operation is used to prepare the Camera Bundle for
image transmission. When applied to a non-zero number of streams the Operation configures the Camera
Module for capture with a list of stream parameters. A non-zero streams Request is only valid in the
UNCONFIGURED state, the Camera Bundle shall reply with an empty payload and set the status to
GB_OP_INVALID_STATE in all other states.

When instead applied to zero streams, the Operation removes the existing stream configuration, and moves
back the Camera Bundle to the UNCONFIGURED state.

If the requested streams configuration is supported the Camera Bundle moves to the CONFIGURED state
and shall be ready to process Capture Requests with as little delay as possible. In particular any time-
consuming procedure which implements Module’s specific power management shall be performed when
moving to the CONFIGURED state. Camera Modules shall not be kept in the CONFIGURED state
unnecessarily.

Streams shall be transmitted over CSI-2 using the reported Virtual Channels and Data Types.

All replies to Requests with the same set of parameters shall be identical.

Greybus Camera Configure Streams Operation Request

The Request specifies the number of streams to be configured. Up to four streams are supported. A Request
with a number of streams higher than four shall be answered by an error Response with the status set to
GB_OP_INVALID. A request with a zero number of streams remove the existing configuration and moves
the Camera Bundle to the UNCONFIGURED state.

The flags field allows the AP Module to inform the Camera Bundle about special requirements applied to
the Request. Accepted values for the Request flags field are listed in Table 10.52.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 144

Offset Field Size Value Description
0 num.streams 1 Number Number of streams. Between 0 and 4
1 flags 1 Number Table 10.52
2 padding 2 0 Shall be set to 0
‘ The following block appears num_streams times ‘
4+(1*8) width 2 Number Image width in pixels
6-+(1*8) height 2 Number Image height in pixels
8+(i*8) format 2 Number Image Format
104+(i*8) padding 2 0 Shall be set to 0

Table 10.51: Camera Class Configure Streams Request

Field (Bit) Value Description

0 TEST-ONLY The requested configuration shall not
be applied but Camera Module shall
only verify it is supported or not.
1-7 Reserved Shall be set to 0

Table 10.52: The flags bitmask in Camera Class Configure Stream Request

The TEST_ONLY bit of the Request flags field allows the AP to test a configuration without applying it.
When the bit is set the Camera Module shall process the Request normally but stop from applying the
configuration. The Module shall send the same Response as it would if the TEST_ONLY bit wasnt set and
stay in the UNCONFIGURED state without modifying the device state.

The Request supplies a set of stream configurations with the desired image width, height and format for
each stream, as show in Table 10.51. Both the width and height shall be multiples of 2. For each supplied
stream configuration, the width, height and format fields shall be copied in the Greybus Camera Configure
Streams Operation Response payload.

Greybus Camera Configure Streams Operation Response

The Camera Module reports its stream configuration in the Response message as shown in Table 10.53. The
value of the num _streams field report the number of actually configured streams.

The flags field allows the Camera Bundle to provide additional information on the delivered Response.
Accepted values for the Response flags field are listed in Table 10.54.

The ADJUSTED bit of the Response flags field is used to support negotiation of the stream configuration.
The Camera Module may modify the requested configuration to match its capabilities. This includes lowering
the number of requested streams, originally reported in the num_streams Request field, and modifying the
width, height and format of each stream. The Module shall, in that case, reply with a configuration it can
support, and set the ADJUSTED bit in the Response flags field. As a result the Camera Bundle shall stay
in the UNCONFIGURED state without modifying the device state.

The data_rate field shall contain the total CSI-2 data rate expressed in Mbits per second, rounded up.

The Camera Module shall report in the Response, along with the (optionally adjusted) image format, width
and height, the Virtual Channel number and Data Types for each stream, regardless of whether the response
was adjusted or not

All Virtual Channel numbers shall be identical and between zero and three inclusive. All Data Types shall
be different.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 145

Offset Field Size Value Description

0 num_streams 1 Number Number of streams. Between 0 and 4
1 flags 1 Number Table 10.54

2 padding 2 0 Shall be set to 0

4 data_rate 4 Number The CSI-2 data rate, expressed

in Mbits per second (rounded up)
The following block appears num_streams times ‘
8+(i*16) width 2 Number Image width in pixels

10+(i*16) height 2 Number Image height in pixels
124+(i*16) format 2 Number Image Format
144(i*16) virtual_chan 1 Number Virtual channel number
154+(i*16) data_type[2] 2 Number Data types for the stream
174(i*16) max_pkt_size 2 Number The length in bytes of largets CSI
Long Packet that transmits frame
lines
19+(i*16) padding 1 0 Shall be set to 0
20+(i*16) max_size 4 Number Maximum frame size in Bytes
Table 10.53: Camera Class Configure Streams Response
Field (Bit) Value Description
0 ADJUSTED The requested configuration is not
supported and has been adjusted
1-7 Reserved Shall be set to 0

Table 10.54: The flags bitmask in Camera Class Configure Stream Response

Up to two data types can be used to identify different components of the same stream sent by a Camera
Module. At least one data type shall be provided by the Camera Module, the second is optional and shall
be set to the reserved 0x00 value if not used. The Data Types should be set to the CSI-2 Data Type value
matching the streams formats if possible, and may be set to a User Defined 8-bit Data Type (0x30 to 0x37).

The Camera Module shall report in the max_pkt_size field the size in bytes of the largest CSI-2 Long Packet
payload for the stream. CSI-2 Long packets are defined in section 9.1 of [CSI-2].

For non-binary image formats Camera Modules shall transmit each line of the image individually in a single
CSI-2 Long Packet. Image lines may have different sizes depending on the image format. The max_pkt_size
is the size in bytes of the largest line of the image.

Binary image formats do not split the image in lines but encode it as a single block of bytes. Binary non-
image formats transmit arbitrary non-image data in a single block of bytes. Camera Modules shall split the
data in chunks in an implementation-defined way and send each chunk in a separate CSI-2 Long Packet.
The max_pkt_size is then the size in bytes of the largest data chunk.

Binary and non-binary formats IDs are defined in the Image Format Identifiers section of this specifications.

Greybus Camera Management Capture Streams Operation
The Capture Streams Operation is used to submit a request for a new image frame transmission on the
Camera Data Connection.

Upon receiving a valid Greybus Camera Management Capture Streams Request, the Camera Bundle shall
return a Response immediately. The capture and transmission of the resulting frames via the Camera Data

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 146

Offset Field Size Value Description

0 request_id 4 number An incrementing integer to uniquely identify the capture request
4 streams 1 bitmask Bitmask of the streams included in the capture request

5 padding 1 0 Shall be set to 0

6 num_frames 2 number Number of frames to capture (0 for infinite)

8 settings n data Capture Request settings

Table 10.55: Camera Class Capture response

Connection occurs asynchronously to the processing of this Operation. These Requests shall be processed
in the order they are received.

Camera Modules should minimize the delay between Requests by pre-processing pending Requests ahead of
time as necessary.

When the first Request is queued, the Camera Module moves to the STREAMING state and starts transmit-
ting frames as soon as possible. When the last Request completes the Bundle moves to the CONFIGURED
state and stops transmitting frames immediately. Modules shall not transmit any UniPro Segment on the
Camera Data Connection except as result of receiving a new Capture Request.

Greybus Camera Management Capture Streams Request

Each Camera Management Capture Stream Request contains an incrementing ID, a bitmask of the streams
it affects, a number of frames to capture for all the streams in the bitmask and a list of settings to be applied
to the transmitted image.

The AP shall set the request_id field in the Request payload to zero for the first Capture Streams Request
it sends, and shall increment the value in this payload by one in each subsequent Request. If the value of
the request_id field is not higher than the ID of the previous Request the Camera Bundle shall ignore the
Request and set the reply status to GB_OP_INVALID.

Modules shall not use the value of the request_id field number for any purpose other than synchronizing the
Capture Operation with the Flush and Metadata Operations. In particular, Camera Bundle shall accept
Requests with IDs higher than the previous one by more than one.

The num_frames field contains the number of times the Request shall be repeated for all affected streams.
Camera Modules shall capture and transmit one frame per stream for every repetition of the image capture
request using the same capture settings. When the num_frames field is set to zero the image capture request
shall be repeated indefinitely until the next Capture Operations Request, or a Flush Operation Request, is
received.

The Capture Streams Request is only valid in the CONFIGURED and STREAMING states. The Camera
Module shall set the Response status to GB_.OP_INVALID_STATE in all other states.

The Capture Streams Request also contains a variable-size settings block that shall conform to the format
described in the Properties Section of this specification. If no settings need to be applied for the Request
the settings block shall have zero size.

Parameters for the Capture Stream Request are shown in Table 10.55

Greybus Camera Management Capture Streams Respose

The Camera Management Operation Capture Response message has no payload.

If the Capture Request streams bitmask field contains non-configured streams the Camera Module shall set
the Response status to GB_OP_INVALID.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 147

Offset Field Size Value Description

0 request_id 4 Number The last Request that will
be processed before the
module stops transmitting
frames

Table 10.56: Camera Class Flush response

Greybus Camera Flush Streams Operation

The Greybus Camera Management Flush Operation removes all Capture requests from the queue and stops
frame transmission as soon as possible.

Delays are permitted to the extent they are necessary to flush hardware pipelines.

After finishing processing of that Request the module moves to the CONFIGURED state and shall not
transmit any more frames.

The Request is only valid in the CONFIGURED and STREAMING states, the Camera Bundle shall reply
with an empty payload and set the status to GB_OP_INVALID_STATE in all other states.

Greybus Camera Flush Streams Operation Request

The Camera Flush Request Message has no payload.

Greybus Camera Flush Streams Operation Respose
In order to allow synchronization, the Greybus Camera Management Flush Response reports the ID contained
in the request_id field of the last processed Greybus Camera Management Capture Streams Request

When the Flush Operation is invoked while the Bundle is in the CONFIGURED state, the request_id field
shall report the ID of the last frame transmitted over the Camera Data Connection. If no frames have been
transmitted yet, the response_id field shall be set to zero.

Payload description for Flush Operation Response is reported in Table 10.56

Greybus Camera Metadata Streams Operation
The Greybus Camera Management Metadata Operation allows the Camera Module to transmit metadata
associated with a frame though the Camera Management Connection.

The frame the delivered metadata is associated with is identified by the request_id field, the frame_number
field and the stream_id field.

Greybus Camera Metadata Streams Operation Request

The Greybus Camera Management Metadata Request is sent by the Camera Module over the Camera Man-
agement Connection. It contains a variable-size metadata block that shall conform to the format described
in the Greybus Camera Properties section of this specification.

If no metadata needs to be reported for a particular frame the metadata block shall have zero size.

The Greybus Camera Metadata Streams Operation Request is defined in Table 10.57

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 148

Offset Field Size Value Description

0 request_id 4 Number The ID of the corresponding frame request
4 frame_number 2 Number The CSI-2 frame number

6 stream_id 1 Number The stream number

7 padding 1 0 Shall be set to zero

8 metadata n metadata Metadata block

Table 10.57: Camera Class Metadata Request

Greybus Camera Properties

The Capabilities, Capture and Metadata operations modify or report the value of a set of Camera Module
properties. Properties are defined as parameters that can report or modify the nature, state or operation of
the Camera Module.

This section defines the structure of a property and a simple and efficient method to encode a set of property
values in a binary data block that can be transmitted over Greybus.

Properties Definition

The Camera Class Protocol specifications defines properties through the following information.
® name
A human readable string used to refer to the property in documentation.
® fey
An integer value that uniquely identifies the property.
e data type
Type of the property value data that determines how the value is to be interpreted.
o values
List, range or otherwise description of acceptable values for the property.

Properties defined in this specification are considered as standard Greybus Camera Device Class properties.
Camera Module vendors are allowed to define additional properties to the extent allowed by the specification.
If they chose to do so they shall define such additional properties using the mechanism described in this
specification.

Property keys range from 0x0000 to Oxffff organized as follows:
e 0x0000 - OxT7fff: Standard Greybus Camera properties
e 0x8000 - 0x8&fff: Vendor-specific properties
e 0x9000 - Oxffff: Reserved
A property stores a value using one of the following data types.
e int8: a signed 8-bit integer
e uint8: an unsigned 8-bit integer
e int32: a signed 32-bit integer
e uint32: an unsigned 32-bit integer

e int64: a signed 64-bit integer

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 149

Property Name TAG Type Description

GB_.CAM_SAMPLE_PROPERTY 0xXXXX type[] Description of property and
intended use-cases

Table 10.58: Camera Class Property Example

Offset Field Size Value Description

0 size 2 number Size of the payload, header excluded
2 nprops 2 number Number of properties in the packet

Table 10.59: Camera Class Property Packet Header

uint64: an unsigned 64-bit integer
float: a single-precision (32-bit) IEEE 754 floating-point value, as defined in [I[EEE7/5]
double: a double-precision (64-bit) IEEE 754 floating-point value, as defined in [IEEE7/5]

rational: a rational expressed as a 32-bit integer numerator and a 32-bit integer denominator. The
denominator shall not be zero

Properties can also store an array of values of the same data type. In that case the property data type is
postfixed with [] to denote the array nature of the data. For instance the data type of an array of 32-bit
integers would be described as int32[].

When the property is directed to (or comes from) the Android Camera framework, only its name and TAG
value are shown.

When a property, instead, is Greybus Camera specific, and not directed to the Android camera framework,
a more detailed description and a range of accepted values (when applicable) is provided, as shown in figure
10.58.

Properties Value Encoding

Greybus Camera Device Class Operations need to transmit a set of property values.

A Property values set is an unordered list of property keys associated with values. To transport it over
Greybus the set shall be serialized into an array of bytes called Properties Packets as follows.

Unless stated otherwise, all numerical fields shall be stored in little-endian format. Signed integers shall be
encoded using a two’s complement representation.

The memory of a Greybus Camera Device Class defined property is shown in Figure 10.2.

The packet starts with a fixed-size header that contains the payload size and the number of Properties it
contains, as shown in Table 10.59.

The header is followed by a payload that stores Property value entries. Each entry contains the Property
key, the Property value length and the Property value, as shown in table 10.60.

The packet shall not contain multiple entries with the same key. The order of payload entries is unspecified
and shall not be relied upon when interpreting the content of the packet.

All value fields shall be padded to a multiple of 4 bytes. The size of the defined data types makes padding
needed for int8 values only.

Values of array data type properties shall be encoded by storing the array elements sequentially without any
space or padding between elements.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 150

Property 1 Property 2 Property n
A A A
r ¥ ! l !
o - = T T
S o |3 o = o |5
H o S = -l > = -~ - = e
= [& | W w/ || W/ |uw < W w| <
73] = X -l = x - = ¥ - =
! M !
¥ ¥
Header Payload (SIZE bytes)
Figure 10.2: Memory layout of a Greybus Camera Device Class Property Packet
Offset Field Size Value Description
0 key 2 number Property key
2 length 2 number Property length in bytes,
padding excluded
4 value n property specific Value of the property

Table 10.60: Camera Class Property Entry

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 151

Property Name TAG Property Name TAG
COLOR-CORRECTION_AVAILABLE_ABERRATION_MODES 0x0004 SCALER-AVAILABLE_JPEG_SIZES 0x0d03
CONTROL_AE_AVAILABLE_ANTIBANDING_MODES 0x0112 SCALER_AVAILABLE MAX DIGITAL_ZOOM 0x0d04
CONTROL_AE_AVAILABLE_MODES 0x0113 SCALER-AVAILABLE_PROCESSED_MIN_DURATIONS 0x0d05
CONTROL_AE_AVAILABLE TARGET_FPS_RANGES 0x0114 SCALER_AVAILABLE PROCESSED_SIZES 0x0d06
CONTROL_AE_COMPENSATION_RANGE 0x0115 SCALER-AVAILABLE_RAW_MIN_DURATIONS 0x0d07
CONTROL_AE_COMPENSATION_STEP 0x0116 SCALER_AVAILABLE RAW_SIZES 0x0d08
CONTROL_AF_AVAILABLE MODES 0x0117 SCALER_AVAILABLE_INPUT_OUTPUT_FORMATS_MAP 0x0d09
CONTROL_AVAILABLE _EFFECTS 0x0118 SCALER_AVAILABLE_STREAM_CONFIGURATIONS 0x0d0a
CONTROL_AVAILABLE_SCENE_MODES 0x0119 SCALER_AVAILABLE MIN_FRAME_DURATIONS 0x0d0b
CONTROL_AVAILABLE_VIDEO_STABILIZATION _MODES 0x01la SCALER_AVAILABLE STALL DURATIONS 0x0d0c
CONTROL_AWB_AVAILABLE_MODES 0x011b SCALER_CROPPING_TYPE 0x0d0d
CONTROL_MAX REGIONS 0x01lc SENSOR_INFO_ACTIVE_ARRAY SIZE 0x0f00
CONTROL_SCENE_MODE_OVERRIDES 0x011d SENSOR_INFO_SENSITIVITY RANGE 0x0f01
CONTROL_AVAILABLE _HIGH_SPEED_VIDEO_CONFIGURATIONS 0x0123 SENSOR_INFO_COLOR_FILTER_ARRANGEMENT 0x0f02
CONTROL_AE_LOCK_AVAILABLE 0x0124 SENSOR_INFO_EXPOSURE_TIME_RANGE 0x0£03
CONTROL_AWB_LOCK_AVAILABLE 0x0125 SENSOR-INFO_MAX_FRAME_DURATION 0x0f04
CONTROL_AVAILABLE_MODES 0x0126 SENSOR_INFO_PHYSICAL_SIZE 0x0£05
FLASH_INFO_AVAILABLE 0x0500 SENSOR-INFO_PIXEL_ARRAY_SIZE 0x0f06
HOT_PIXEL_AVAILABLE HOT_PIXEL_MODES 0x0601 SENSOR_INFO_WHITE_LEVEL 0x0f07
JPEG_AVAILABLE_THUMBNAIL_SIZES 0x0707 SENSOR_INFO_TIMESTAMP_SOURCE 0x0£08
JPEG_MAX SIZE 0x0708 SENSOR_INFO_LENS_SHADING_APPLIED 0x0f09
LENS_FACING 0x0805 SENSOR_INFO_PRE_.CORRECTION_ACTIVE_ARRAY _SIZE 0x0f0a
LENS_POSE_ROTATION 0x0806 SENSOR_CALIBRATION_TRANSFORM1 0x0e05
LENS_POSE_TRANSLATION 0x0807 SENSOR_CALIBRATION_TRANSFORM?2 0x0e06
LENS_INFO_AVAILABLE_APERTURES 0x0900 SENSOR_COLOR_-TRANSFORM1 0x0e07
LENS_INFO_AVAILABLE_FILTER_DENSITIES 0x0901 SENSOR_COLOR_-TRANSFORM?2 0x0e08
LENS_INFO_AVAILABLE FOCAL_LENGTHS 0x0902 SENSOR_FORWARD_MATRIX1 0x0e09
LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION 0x0903 SENSOR_.FORWARD_MATRIX2 0x0e0a
LENS_INFO_HYPERFOCAL_DISTANCE 0x0904 SENSOR_BLACK_LEVEL_PATTERN 0x0e0c
LENS_INFO_MINIMUM_FOCUS_DISTANCE 0x0905 SENSOR_MAX _ANALOG_SENSITIVITY 0x0e0d
LENS_INFO_SHADING_MAP_SIZE 0x0906 SENSOR-ORIENTATION 0x0e0e
LENS_INFO_FOCUS_DISTANCE_CALIBRATION 0x0907 SENSOR_PROFILE_HUE_SAT_MAP_DIMENSIONS 0x0e0f
LENS_INTRINSIC_CALIBRATION 0x080a SENSOR-AVAILABLE_TEST_PATTERN_MODES 0x0e19
LENS_RADIAL_DISTORTION 0x080b SHADING_AVAILABLE_MODES 0x1002
QUIRKS_METERING_CROP_REGION 0x0b00 STATISTICS_INFO_AVAILABLE FACE_DETECT_MODES 0x1200
QUIRKS_-TRIGGER_AF_WITH_AUTO 0x0b01 STATISTICS_INFO_MAX FACE_COUNT 0x1202
QUIRKS_USE_ZSL_FORMAT 0x0b02 STATISTICS_INFO_AVAILABLE HOT_PIXEL_MAP_MODES 0x1206
QUIRKS_USE_PARTIAL_RESULT 0x0b03 STATISTICS_INFO_AVAILABLE LENS_SHADING _MAP_MODES 0x1207
REQUEST_MAX NUM_OUTPUT_STREAMS 0x0c06 TONEMAP_MAX_CURVE_POINTS 0x1304
REQUEST MAX NUM_REPROCESS_STREAMS 0x0c07 TONEMAP_AVAILABLE TONE_MAP_MODES 0x1305
REQUEST_PIPELINE_.MAX DEPTH 0x0c0a LED_AVAILABLE_LEDS 0x1401
REQUEST_PARTIAL_RESULT_COUNT 0x0cOb INFO_SUPPORTED HARDWARE_LEVEL 0x1500
REQUEST_AVAILABLE_CAPABILITIES 0x0c0c SYNC_MAX_LATENCY 0x1701
REQUEST_AVAILABLE REQUEST _KEYS 0x0c0d DEPTH.MAX DEPTH_SAMPLES 0x1900
REQUEST_AVAILABLE_RESULT KEYS 0x0c0e DEPTH_AVAILABLE DEPTH STREAM_CONFIGURATIONS 0x1901
REQUEST-AVAILABLE_.CHARACTERISTICS_KEYS 0x0c0f DEPTH_AVAILABLE_DEPTH_-MIN_FRAME_DURATIONS 0x1902
SCALER_AVAILABLE FORMATS 0x0d01 DEPTH_AVAILABLE DEPTH _STALL DURATIONS 0x1903
SCALER-AVAILABLE_JPEG_MIN_DURATIONS 0x0d02 DEPTH_DEPTH_IS_EXCLUSIVE 0x1904

Figure 10.3: Camera Device Class Capababilities IDs

Padding is only required at the end of the array to align its size to a multiple of 4 bytes.

Capabilities
Capabilities tags are reported by Camera Modules in order to describe their characteristics and their available
features.

Capabilities tags defined in Table 10.3 are directed to the Android framework, for this reason their types,
supported values and detailed description are documented by the Android system documentation.

Greybus Camera Device Class specific capabilities tags are defined in Table 10.4. Greybus Camera Device
Class tags are used to describe Greybus Camera specific attributes and Camera Module shall include all of
them in their reported Capabilities packets.

The accepted values for the reported GB_.CAM_METADATA _FORMAT tag are listed in Table 10.61.
The accepted values for the reported GB_.CAM_METADATA_TRANSPORT tag are listed in Table 10.62.
The GB_.CAM_PRE_CROP_REGIONS specifies an array of uint32_t fields, whose values are listed in Table

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 152

Property Name TAG Type Description

GB_CAM FEATURE_JPEG 0X7f00 bool The Camera Module supports on-board
JPEG encoding

GB_CAM_FEATURE_SCALER 0X7f01 bool The Camera Module supports on-board
image scaling

GB_.CAM_METADATA FORMAT 0x7f02 int8 Supported metadata format as defined
in Table 10.61

GB_.CAM_METADATA TRANSPORT 0x7f03 int8 Supported metadata transport as defined

in Table 10.62
GB_CAM_PER_FRAME_CONTROL 0x7f04 bool The Camera Module support per-frame Control
GB_CAM_PRE_CROP_REGIONS 0x7f05 uint32[] Field of view cropping, applied by Camera

Module on its full pixel array size.

Array members are shown in Table

10.63

Figure 10.4: Camera Device Class Capabilities IDs

Property Name Value Description

METADATA_TRANSPORT_GB 0 The Camera Module sends metadata encoded
as prescribed by this Specifications

METADATA_TRANSPORT_CUSTOM 1 The Camera Module sends metadata encoded

in custom format

Table 10.61: Camera Device Class Accepted Metadata Format

Property Name Value Description

METADATA_TRANSPORT_NONE 0 The Camera Module does not send metadata

METADATA_TRANSPORT_CSI 1 The Camera Module sends metadata interleaved
to image frames on the CSI-2 transport

METADATA_TRANSPORT_OP 2 The Camera Module sends metadata using the

Greybus Camera Metadata Streams Operation

Table 10.62: Camera Device Class Accepted Metadata Transport Methods

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 153

Array Entry Index Name Description

0 Stream Format Greybus wire image format, as defined
in Table 10.66

1 Stream Width Width, in pixels, of the video stream

2 Stream Height Height, in pixels, of the video stream

3 Crop Top Vertical offset, in pixels, of the
top-left corner of the cropping
rectangle

4 Crop Left Horizontal offset, in pixels, of the
top-left corner of the cropping
rectangle

5 Crop Width Width, in pixels, of the cropping
rectangle

6 Crop Height Height, in pixels, of the cropping
rectangle

Table 10.63: Camera Device Class Pre Crop Region Array

10.63.

Camera Modules can crop and/or scale the full sensor’s field of view to achieve desired output resolutions.
This property is used to describe, for each supported stream configuration, the associated cropping applied
to the sensor’s pixel array.

Camera Modules shall report, for each stream configuration listed in the
SCALER_AVAILABLE_STREAM_CONFIGURATIONS property, the coordinates of the top-left cor-
ner of the associated cropping rectangle, expressed as displacement (in pixels) from the top-left corner of
the sensor’s active pixel array, and the cropping rectangle horizontal and vertical dimensions.

The data transported by GB_.CAM_PRE_CROP_REGIONS property shall have an exact multiple of twenty-
eight bytes as size, being composed by a number of tuples of seven elements, each of them four bytes long.

The number of seven element tuples reported in this property shall correspond to the number
of elements reported in the SCALER_AVAILABLE_STREAM_CONFIGURATIONS property, one for
each supported stream configuration. The elements shall be stored in the same order as the
SCALER_AVAILABLE_STREAM_CONFIGURATIONS entries.

Capture Settings

Capture Setting tags are used to provide to the Camera Module the desired image processing settings it
shall apply to the next captured frames. Camera Modules should minimize the delay required to apply the
received settings as much as possible.

Capture Settings are generated by the Android framework, and sent on the wire along with each Greybus
Camera Management Capture Streams Request. For this reason, their types, accepted values and detailed
description are provided by the Android system documentation.

Metadata

Camera Modules should encode metadata using the properties and serialization format defined in this section.

However, when this isnt possible or practical (for instance when the module hardware dictates the metadata
format), modules may chose to encode metadata using a custom method for metadata transmitted over

CSI-2.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 154
Property Name TAG Property Name TAG
COLOR_CORRECTION_MODE 0x0000 JPEG_THUMBNAIL SIZE 0x0706
COLOR_CORRECTION_TRANSFORM 0x0001 LENS_APERTURE 0x0800
COLOR_-CORRECTION_GAINS 0x0002 LENS_FILTER_DENSITY 0x0801
COLOR_CORRECTION_ABERRATION_MODE 0x0003 LENS FOCAL_LENGTH 0x0802
CONTROL_AE_ANTIBANDING_MODE 0x0100 LENS_FOCUS_DISTANCE 0x0803
CONTROL_AE_EXPOSURE_.COMPENSATION 0x0101 LENS_OPTICAL_STABILIZATION_MODE 0x0804
CONTROL_AE_LOCK 0x0102 REQUEST FRAME_COUNT 0x0c00
CONTROL_AE_MODE 0x0103 REQUEST_ID 0x0c01
CONTROL_AE_REGIONS 0x0104 REQUEST_INPUT_STREAMS 0x0c02
CONTROL_AE_TARGET_FPS_RANGE 0x0105 REQUEST_OUTPUT_STREAMS 0x0c04
CONTROL_AE_PRECAPTURE_TRIGGER 0x0106 REQUEST_TYPE 0x0c05
CONTROL_AF_MODE 0x0107 SCALER_CROP_REGION 0x0d00
CONTROL_AF_REGIONS 0x0108 SENSOR_EXPOSURE_TIME 0x0e00
CONTROL_AF_TRIGGER 0x0109 SENSOR_FRAME_DURATION 0x0e01
CONTROL_AWB_LOCK 0x010a SENSOR_SENSITIVITY 0x0e02
CONTROL_AWB_MODE 0x010b SENSOR_TEST_PATTERN_DATA 0x0el7
CONTROL_AWB_REGIONS 0x010c SENSOR_TEST_PATTERN_MODE 0x0el8
CONTROL_CAPTURE_INTENT 0x010d SHADING_MODE 0x1000
CONTROL_EFFECT_MODE 0x010e STATISTICS_.FACE_DETECT_MODE 0x1100
CONTROL_MODE 0x010f STATISTICS_HOT_PIXEL_MAP_MODE 0x1103
CONTROL_SCENE_MODE 0x0110 STATISTICS_.LENS_SHADING_MAP_MODE 0x1110
CONTROL_VIDEO_STABILIZATION_MODE 0x0111 TONEMAP_CURVE_BLUE 0x1300
FLASH_ MODE 0x0402 TONEMAP _CURVE_GREEN 0x1301
HOT_PIXEL_MODE 0x0600 TONEMAP_CURVE_RED 0x1302
JPEG_GPS_COORDINATES 0x0700 TONEMAP_MODE 0x1303
JPEG_GPS_PROCESSING_METHOD 0x0701 TONEMAP_GAMMA 0x1306
JPEG_GPS_TIMESTAMP 0x0702 TONEMAP _PRESET_CURVE 0x1307
JPEG_ORIENTATION 0x0703 LED_TRANSMIT 0x1400
JPEG_QUALITY 0x0704 BLACK_LEVEL_LOCK 0x1600

JPEG_THUMBNAIL_QUALITY

0x0705

Table 10.64: Camera Device Class Capture Settings IDs

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 155

Metadata transmitted over Greybus using the Greybus Camera Metadata Streams Operation Request shall
always be encoded as specified in this section.

Metadata transmitted over CSI-2 using a custom encoding shall at minimum contain the ID of the associated
request.

Table 10.65 define the IDs of metadata tags accepted by the Greybus Camera Device Class. Metadata tags
are sent to the Android framework, for this reason their types, accepted values and detailed description are
provided by the Android system documentation.

Greybus Camera Image Formats (Informative)

Introduction

Image formats specify how image data is structured to be sent over CSI-2.
A format defines the following properties.
e The color encoding

Colors are encoded as three integer values called components. The components most fre-
quently represent RGB or YUV values.

In RGB encoding each pixel is described by Red, Green and Blue components. For sensors
using a color filter array such as a Bayer filter, only one of the components is available for a
given pixel.

In YUV encoding each pixel is described by its Luma (Y), Blue Chroma (Cb or U) and Red
Chroma (Cr or V). The red and blue chroma are collectively called chroma components or
chroma and abbreviated UV.

e The color depth

Also known as bit depth, the color depth is the number of bits used for each color component
of a pixel.

The Camera Class Protocol uses the same number of bits of all color components of a pixel.
Typical values are 8, 10 and 12.

e The components interleaving method

Components of a pixel may be transmitted together or separately. A format that transmits
all components together is called a packed format. Figure 10.5 shows how the first three
pixels of an image are transmitted in a packed RGB format.

L

Position in Data Stream

Figure 10.5: Three pixels encoded in packed RGB format

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 156
Property Name TAG Property Name TAG
COLOR-CORRECTION_MODE 0x0000 LENS_POSE.TRANSLATION 0x0807
COLOR_CORRECTION_TRANSFORM 0x0001 LENS INTRINSIC CALIBRATION 0x080a
COLOR-CORRECTION_GAINS 0x0002 LENS_RADIAL DISTORTION 0x080b
COLOR-CORRECTION_ABERRATION_.MODE 0x0003 QUIRKS_PARTIAL_RESULT 0x0b04
CONTROL_AE_PRECAPTURE_ID 0x01le REQUEST_ID 0x0c01
CONTROL_AE_ANTIBANDING_MODE 0x0100 REQUEST_OUTPUT_STREAMS 0x0c04
CONTROL_AE_EXPOSURE_COMPENSATION 0x0101 REQUEST_PIPELINE_DEPTH 0x0c09
CONTROL_AE_LOCK 0x0102 SCALER_CROP_REGION 0x0d00
CONTROL_AE_MODE 0x0103 SENSOR_EXPOSURE_TIME 0x0e00
CONTROL_AE_REGIONS 0x0104 SENSOR_FRAME DURATION 0x0e01
CONTROL_AE_TARGET _FPS_RANGE 0x0105 SENSOR_SENSITIVITY 0x0e02
CONTROL_AE_PRECAPTURE_TRIGGER 0x0106 SENSOR_TIMESTAMP 0x0e10
CONTROL_AE_STATE 0x011f SENSOR_NEUTRAL_COLOR_POINT 0x0el12
CONTROL_AF_MODE 0x0107 SENSOR_NOISE_PROFILE 0x0e13
CONTROL_AF_REGIONS 0x0108 SENSOR_PROFILE_HUE_SAT_MAP 0x0el4
CONTROL_AF_TRIGGER 0x0109 SENSOR_PROFILE_TONE_CURVE 0x0el5
CONTROL_AF_STATE 0x0120 SENSOR_TEST_PATTERN_DATA 0x0el7
CONTROL_AF_TRIGGER_ID 0x0121 SENSOR_TEST_PATTERN_MODE 0x0el18
CONTROL_AWB_LOCK 0x010a SENSOR_ROLLING_SHUTTER_SKEW 0x0ela
CONTROL_AWB_MODE 0x010b SHADING_MODE 0x1000
CONTROL_AWB_REGIONS 0x010c STATISTICS_FACE_.DETECT_MODE 0x1100
CONTROL_.CAPTURE_INTENT 0x010d STATISTICS_FACE_LANDMARKS 0x1105
CONTROL_AWB_STATE 0x0122 STATISTICS_.FACE_RECTANGLES 0x1106
CONTROL_EFFECT_-MODE 0x010e STATISTICS_FACE_SCORES 0x1107
CONTROL_MODE 0x010f STATISTICS_.LENS_SHADING_CORRECTION_MAP 0x110a
CONTROL_SCENE_MODE 0x0110 STATISTICS_LENS_SHADING_MAP 0x110b
CONTROL_VIDEO_STABILIZATION_MODE 0x0111 STATISTICS_PREDICTED_COLOR_GAINS 0x110c
FLASH_.MODE 0x0402 STATISTICS_.PREDICTED_COLOR_-TRANSFORM 0x110d
FLASH_STATE 0x0405 STATISTICS_SCENE_FLICKER 0x110e
HOT_PIXEL_MODE 0x0600 STATISTICS_ HOT_PIXEL_.MAP _MODE 0x1103
JPEG_GPS_COORDINATES 0x0700 STATISTICS_HOT_PIXEL_MAP Ox110f
JPEG_GPS_PROCESSING_-METHOD 0x0701 STATISTICS_LENS_SHADING_-MAP_MODE 0x1110
JPEG_GPS_TIMESTAMP 0x0702 TONEMAP_CURVE_BLUE 0x1300
JPEG_ORIENTATION 0x0703 TONEMAP_CURVE_GREEN 0x1301
JPEG_QUALITY 0x0704 TONEMAP_CURVE_RED 0x1302
JPEG_.THUMBNAIL_QUALITY 0x0705 TONEMAP_MODE 0x1303
JPEG_THUMBNAIL_SIZE 0x0706 TONEMAP_GAMMA 0x1306
LENS_APERTURE 0x0800 TONEMAP_PRESET_CURVE 0x1307
LENS_FILTER DENSITY 0x0801 LED_TRANSMIT 0x1400
LENS_FOCAL_LENGTH 0x0802 BLACK_LEVEL_LOCK 0x1600
LENS_FOCUS_DISTANCE 0x0803 SYNC_FRAME_NUMBER 0x1700
LENS_OPTICAL_STABILIZATION_MODE 0x0804 REPROCESS_EFFECTIVE_EXPOSURE_FACTOR 0x1800
LENS_POSE_ROTATION 0x0806

Table 10.65: Camera Device Class Metadata IDs

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

157

The same component arrangement is repeated for the remaining pixels of the image, line after
line.

A format that transmit components separately is called a planar format. Figure 10.6 shows how
an image may be transmitted in a planar YUV format.

1 ¥2 Y3

Position in Data Stream

Figure 10.6: Planar YUV image encoding

The ellipsis patterns (...) denote the rest of all luma, blue chroma and red chroma components
respectively.

A format may also combine planar and packed components arrangements. Such a format is
called semi-planar. In practice semi-planar formats are used with YUV encoding only and split
components in a Y plane and a packed UV plane, as shown in Figure 10.7.

Y1 Y2 Y3

Position in Data Stream

Figure 10.7: Semi-planar YUV image encoding

In full planar YUV formats luma and chroma components are separated in three planes, one for
each component.

In semi-planar YUV formats luma and chroma components are separated in two planes. The
luma plane contains the luma components only, and the chroma plane contains the blue and
red chroma components interleaved. Every semi-planar format comes in two chroma interleaving
variants, in the UV or VU order.

e The components ordering

Within a given interleaving method components may be arranged differently. For instance,
a packed RGB format may transmit the three pixel components in the (R, G, B) or (B, G,
R) order. Similarly, a planar YUV format may transfer the U plane before the V plane or
the V plane before the U plane.

o The components subsampling ratios

In YUV formats the chroma components may be sub-sampled horizontally and/or vertically
to reduce bandwidth.

The most common subsampling ratios are:

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 158

— 4:4:4 - No subsampling, every pixel has three color components
— 4:2:2 - Horizontal subsampling by 1/2
— 4:2:0 - Horizontal and vertical subsampling by 1/2

Figure 10.8 shows the relationship between pixels and luma and chroma components in a
8x2 pixels image.

¥1 ¥2 Y3 Y4 Y1 Y2 Y3 ¥4

hi-] Y6 Y7 Y8 Y5 Y6 Y7 Y8

YUV 4:2:2 YUV 4:2:0

Figure 10.8: YUV4:2:2 and YUV4:2:0 sampling examples

When subsampling chroma components the location of the components relatively to the pixels must be
specified.

Data Transmission

Unless otherwise noted all image frames shall be transmitted in accordance with section 9 of [CSI-2].

Camera Modules shall transmit all streams multiplexed over a single CSI-2 port and a single Virtual Channel,

using the Data Type Interleaving method defined by CSI-2. The modules shall use Packet Level Interleaving
as defined in section 9.13.1 of [CSI-2].

Each format defined in this specification may add specific requirements.
In the following figures symbols shall be interpreted as follows.

e F'S: Frame Start

e FE: Frame End

o PH: Packet Header

e PF: Packet Footer

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 159

Packed Formats

All packed formats are sent using a single CSI-2 Data Type
Packed YUV4:2:2 Image Format

This format transmits pixels encoded in YUV with 8 bits per component and a 4:2:2 subsampling. The
image width shall be a multiple of two pixels.

Packed YUV 4:2:2 shall be transmitted as specified in section 11.2.4 of [CSI-2].

Figure 10.9 illustrates how to transmit one line of the image.

PH . vi . Yz . -
. Y ¥ ¥ Y

Position in Data Stream

¥

Ead
=

Figure 10.9: Packed YUV4:2:2 image transmission format

Chroma components are spatially sampled at the same location as the luma components with a corresponding
sample number.

Packed YUV4:2:0 Image Format

This format transmits pixels encoded in YUV with 8 bits per component and a 4:2:0 subsampling. The
image width and height shall be multiples of two pixels.

Packed YUV 4:2:0 shall be transmitted as specified in sections 11.2.2 and 11.2.1 (legacy format) of [CSI-2].

Figure 10.10 and 10.11 illustrate how to transmit image lines in YUV4:2:0 non-legacy and legacy format
respectively.

In the non-legacy format even lines are twice as long as odd lines.

Chroma components x transmitted on odd line y and even line y+1 are spatially sampled in the middle of
the four pixels at locations (x,y), (x+1,y), (x,y+1), (x+1,y+1).

Planar and Semi-Planar Formats

Planar and semi-planar formats separate pixel components in two or more planes.
Planes from one image frame shall be transmitted using line interleaving or plane sequential mode.

e In line interleaving mode, samples from a single line of a plane shall be transmitted in one or more
consecutive CSI-2 packets. Lines shall then be interleaved as specified by each format. All samples
from a line are thus transmitted contiguously relatively to samples from different planes of the same
frame.

e In plane sequential mode, samples from a single plane shall be transmitted in consecutive CSI-2 packets.
All samples from a plane are thus transmitted contiguously relatively to samples from different planes
of the same frame.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 160

Odd Line PH | ¥v1 | vy2 | v3 | va

Y
n-3 n-2 n-1 n PF

¥4

n-3

Y Y

Position in Data Stream

YUV 4:2:0 Non-Legacy

Figure 10.10: Packed YUV4:2:0 Non-Legacy image transmission format

Odd Line Y4

¥ Y Y Y

n=3 n-2 . n-1 n PF
Ewven Line Y4

Y Y Y Y

n-3 n-2 . n-1 n PF

Position in Data Stream

YUV 4:2:0 Legacy

Figure 10.11: Packed YUV4:2:0 Legacy image transmission format

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 161

In both modes packets from multiple streams may be interleaved freely.

Planar formats can come in two variants, one with all planes transmitted using a single Data Type, and one
with planes transmitted using separate Data Types.

Semi-Planar YUV4:2:2 Image Format

These formats transmit pixels encoded in YUV with 8 bits per component and a 4:2:2 subsampling. The
image width shall be a multiple of two pixels. The number of chroma line is equal to the number of luma
lines.

The semi-planar YUV 4:2:2 formats are Greybus specific, they are not defined in [CSI-2/. They come in
eight variants with all combinations of number of Data Types, U/V ordering and interleaving mode.

In line-interleaved mode a luma line is sent first followed by one chroma line. The chroma line contains
samples related to the same pixels as the luma line. The same pattern repeats until the end of the frame.
Figure 10.12 illustrates how to transmit one frame in line-interleaved mode with the UV chroma interleaving
order.

Position in Data Stream }

PH Y Y Y Y s s Y Y PF | Line1
PF | Line1
PF | Line 2
PF | Line 2
PF
PF
PF | Linen
PF | Linen

Line-lnterleaved Mode

Figure 10.12: Example of image transmission using line interleaving mode and YUV4:2:2 semi-planar sam-
pling mode

In plane-interleaved mode all luma lines are sent first followed by all chroma lines. Figure 10.13 illustrates
how to transmit one frame in plane sequential mode with the UV chroma interleaving order.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 162
Position in Data Stream "
PH Y Y Y Y s e Y Y PF | Line1
PH Y ¥ Y Y Y Y PF | Line 2
FH o o . ses sas . - = PF
PH Y Y Y Y o o Y Y PF | Linen
PF Line 1
PF Line 2
PF
PF Line n

Plane-Sequential Mode

Figure 10.13: Example of image transmission using plane interleaving mode and YUV4:2:2 semi-planar

sampling mode

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 163

Chroma components are spatially sampled at the same location as the luma components with a corresponding
sample number.

Semi-Planar YUV4:2:0 Image Format

These formats transmit pixels encoded in YUV with 8 bits per component and a 4:2:0 subsampling. The
image width and height shall be multiples of two pixels. The number of chroma lines is half the number of
luma lines. Each chroma line stores values related to two lines of pixels.

The semi-planar YUV 4:2:0 formats are Greybus specific, they are not defined in [CSI-2]. They come in
eight variants with all combinations of number of Data Types, U/V ordering and interleaving mode.

In line-interleaved mode lines are sent in groups of two luma lines and one chroma line. The group starts
with an odd luma line, followed by one chroma line, followed by an even luma line. The chroma line contains
samples related to the same pixels as the two luma lines. The same pattern repeats until the end of the
frame.

Figure 10.14 illustrates how to transmit one frame in line-interleaved mode with the UV chroma interleaving
order.

Position in Data Stream

PH Y Y Y Y Y Y PF Line 1

Lines 1 & 2

Line 2

Line n-1

Lines n-1&n

PH Y Y Y Y Y Y FF Line n

Line-Interleaved Mode

Figure 10.14: Example of image transmission using line interleaving mode and YUV4:2:0 semi-planar sam-
pling mode

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 164

In plane-interleaved mode all luma lines are sent first followed by all chroma lines. Figure 10.15 illustrates
how to transmit one frame in plane sequential mode with the UV chroma interleaving order.

Position in Data Stream

F H ? ? ? v LLL) LLL) ? v PF Li n E 1

PH Y Y Y Y Y Y PF | Line 2

FH e e o e e o PF

FH e e e o e o PF

PH Y ¥ Y Y Y ¥ PF Line n-1

PH Y ¥ ¥ hi Y ¥ PF | Linen

Lines 1 & 2

Lines n-1 & n

Plana Sanuantial Mads

Figure 10.15: Example of image transmission using plane interleaving mode and YUV4:2:0 semi-planar
sampling mode

Chroma components x transmitted on odd line y and even line y+1 are spatially sampled in the middle of
the four pixels at locations (x,y), (x+1,y), (x,y+1), (x+1,y+1).

Planar YUV4:2:2 Image Format

These formats transmit pixels encoded in YUV with 8 bits per component and a 4:2:2 subsampling. The
image width shall be a multiple of two pixels. The number of chroma line is equal to the number of luma
lines.

The planar YUV 4:2:2 formats are Greybus specific, they are not defined in [CSI-2/. They come in two
variants for U/V ordering.

Only plane-interleaved is supported. All luma lines are sent first, followed by all blue or red chroma lines,
followed by all remaining (red or blue) chroma lines. Figure 10.16 illustrates how to transmit one frame in
plane sequential mode with the UV chroma order.

Chroma components are spatially sampled at the same location as the luma components with a corresponding
sample number.

Planar YUV4:2:0 Image Format

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

165

Position in Data Stream

PH Y Y Y Y p PF
PH - - PF
PH Y Y Y Y an PF

PH

PH

PH

PH

PH

PH

Plane-Sequential Mode

PF

PF

PF

PF

PF

PF

Line 1

Line n

Line 1

Line n

Line 1

Line n

Figure 10.16: Example of image transmission using plane interleaving mode and YUV4:2:2 planar sampling

mode

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 166

These formats transmit pixels encoded in YUV with 8 bits per component and a 4:2:0 subsampling. The
image width and height shall be multiples of two pixels. The number of chroma lines is half the number of
luma lines. Each chroma line stores values related to two lines of pixels.

The planar YUV 4:2:0 formats are Greybus specific, they are not defined in [CSI-2/. They come in two
variants for U/V ordering.

Only plane-interleaved is supported. All luma lines are sent first, followed by all blue or red chroma lines,
followed by all remaining (red or blue) chroma lines.

Figure 10.17 illustrates how to transmit one frame in plane sequential mode with the UV chroma order.

L}

Position in Data Stream

PH b Y Y Y = - Y Y PF | Line 1

PH | b | Y Y o o Y Y PF | Line 2

PH o - o - o FF

PH Y b Y Y o= - ¥ ¥ PF | Linen

PH Lines 1 & 2
PH Linesn-1&n
PH Lines 1 &2
PH Lines n-1 & n

Plane-Sequential Mode

Figure 10.17: Example of image transmission using plane interleaving mode and YUV4:2:2 planar sampling
mode

Chroma components x transmitted on odd line y and even line y+1 are spatially sampled in the middle of
the four pixels at locations (x,y), (x+1,y), (x,y+1), (x+1,y+1).

Image Format ldentifiers

Image formats are identified by a numeric ID, as reported in table 10.66.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 167

| Format | ID | Packing | DT | UV |
Reserved shall not be used 0x00
YUV Formats
UYVY422 PACKED 0x01 | Packed 1
UYVY420_PACKED 0x02 | Packed 1
UYYVYY420_.PACKED 0x03 | Packed 1
YUV422_SEMIPLANAR_LINE_1DT 0x04 | Semi Planar | 1 uv
YVU422_SEMIPLANAR_LINE_1DT 0x05 | Semi Planar | 1 VU
YUV422_SEMIPLANAR_LINE_2DT 0x06 | Semi Planar | 2 uv
YVU422_SEMIPLANAR_LINE_2DT 0x07 | Semi Planar | 2 VU
YUV422_SEMIPLANAR_PLANE_1DT | 0x08 | Semi Planar | 1 uv
YVU422_SEMIPLANAR_PLANE_1DT | 0x09 | Semi Planar | 1 VU
YUV422_ SEMIPLANAR_PLANE_2DT | 0x0A | Semi Planar | 2 uv
YVU422_SEMIPLANAR_PLANE_2DT | 0x0B | Semi Planar | 2 VU
YUV422_ PLANAR_PLANE_1DT 0x0C | Planar 1 uv
YVU422_ PLANAR_PLANE_1DT 0x0D | Planar 1 VU
YUV420_SEMIPLANAR_LINE_1DT 0xOE | Semi Planar | 1 uv
YVU420_SEMIPLANAR_LINE_1DT 0xOF | Semi Planar | 1 VU
YUV420_SEMIPLANAR_LINE_2DT 0x10 | Semi Planar | 2 uv
YVU420_SEMIPLANAR_LINE_2DT 0x11 | Semi Planar | 2 VU
YUV420_SEMIPLANAR_PLANE_1DT | 0x12 | Semi Planar | 1 Uv
YVU420_SEMIPLANAR_PLANE_1DT | 0x13 | Semi Planar | 1 VU
YUV420_SEMIPLANAR_PLANE_2DT | 0x14 | Semi Planar | 2 uv
YVU420_SEMIPLANAR_PLANE_2DT | 0x15 | Semi Planar | 2 VU
YUV420_.PLANAR_PLANE_1DT 0x16 | Planar 1 uv
YVU420_PLANAR_PLANE_1DT 0x17 | Planar 1 VU
Binary Formats
JPEG 0x40
Metadata 0x41

Raw Formats
RAW1 (FIXME) | 0x80 | | |

Table 10.66: Camera Device Class Image Format Identifiers

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 168

Component Authentication Operation Type Request Value Response Value

CPort Shutdown 0x00 0x80
Get Endpoint UID 0x01 0x81
Get IMS Certificate 0x02 0x82
Authenticate 0x03 0x83
(all other values reserved) 0x04..0x7e 0x84..0xfe
Invalid 0x7f Oxff

Table 10.67: Component Authentication Operation Types

Component Authentication Protocol

The Greybus Component Authentication Protocol may be used by the AP to determine the authenticity of
an Interface.

Two forms of authentication are currently defined:

e Ecosystem Authentication, which uses an Ecosystem Authentication Certificate (EAC) and a secret
key derived from the Internal Master Secret (IMS) associated with an Interface.

e Identity Authentication, which uses an Identity Authentication Certificate (IAC) and a secret key
derived from the IMS associated with an Interface.

Conceptually, the Operations in the Component Authentication Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int get_endpoint_uid(u8 endpoint_uid[8]);
This Operation may be initiated only by the AP to obtain the endpoint unique ID of an Interface. The
Response to this Operation contains the endpoint unique ID value.

int get_ims_certificate(u32 cert_class, u32 cert_id, u8 #*result_code, u8 *certificate);
This Operation may be initiated only by the AP to obtain a certificate from an Interface. The Response
to this Operation contains the certificate data.

int authenticate(u8 auth_type, u8 endpoint_uid[8], u8 challenge[32], u8 *result_code, u8 auth_response [6
This Operation may be initiated only by the AP to present a challenge to an Interface. The Response to
this Operation contains cryptographic response to the challenge and a signature for the cryptographic
response.

Component Authentication Operations

The AP Module may use the Component Authentication Protocol to evaluate the authenticity of an Interface.
The Request and Response messages for each Component Authentication Operation are defined below.

Table 10.67 describes the Greybus Component Authentication Operation Types and their values.

Greybus Component Authentication CPort Shutdown Operation

The Greybus Component Authentication CPort Shutdown Operation is the Common Greybus Protocol CPort
Shutdown Operation for the Component Authentication Protocol.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 169

Offset Field Size Value Description

0 endpoint_uid 8 Byte array Endpoint Unique ID

Table 10.68: Component Authentication Get Endpoint UID Response

Greybus Component Authentication Get Endpoint UID Operation
The Greybus Component Authentication Get Endpoint UID Operation may be used by the AP to obtain
the Endpoint Unique ID (EPUID) associated with an Interface.

The EPUID is a constant eight-byte value guaranteed to be unique across all UniPro endpoints (e.g., Inter-
faces) in any system components supporting the Greybus Component Authentication Protocol. The EPUID
bytes are sent in little-endian format-least significant byte first. The EPUID is derived from a globally
unique value known as the IMS, which shall be available to each Interface that supports this Protocol.

The EPUID serves as a key for determining the names of cryptographic certificates used in this Protocol.

Greybus Component Authentication Get Endpoint UID Request

The Greybus Component Authentication Get Endpoint UID Request has no payload.

Greybus Component Authentication Get Endpoint UID Response
The Greybus Component Authentication Get Endpoint UID Response contains an eight-byte field, end-
point_uid.

The endpoint_uid field in the Response payload shall contain the little endian format Endpoint Unique ID
value for the Interface.

Greybus Component Get IMS Certificate Operation

The Greybus Component Authentication Get IMS Certificate Operation may be used by the AP to retrieve
one of the cryptographic certificates held by an Interface for use in Component Authentication.

Greybus Component Authentication Get IMS Certificate Request

The Greybus Component Authentication Get IMS Certificate Request contains a four-byte field, cert_class
and a four-byte field, cert_id. The cert_class field specifies which of the potentially multiple certificates held
by an Interface is selected for this Operation, and shall be set to one of the valid values in Table 10.69. The
cert_id is the ID of the certificate. It is reserved for future use, and implementations adhering to this version
of the protocol shall set its value to zero.

The Greybus Component Authentication Get IMS Certificate Request is sent by the AP to an Interface in
order to obtain the data content of a cryptographic certificate of appropriate class.

Greybus Component Authentication Get IMS Certificate Response

The Greybus Component Authentication Get IMS Certificate Response contains a one-byte field, result_code,
and an arbitrary-size data block, cert_data, that is the requested certificate. The size of the certificate shall
not exceed 1600 bytes.

The result_code field shall identify one of the conditions defined in Table 10.72.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 170

Certificate Class Description Value

CERT_IMS_INVALID Invalid 0x00000000
CERT_IMS_EAPC Ecosystem Authentication Certificate, Primary Key 0x00000001
CERT_IMS_EASC Ecosystem Authentication Certificate, Secondary Key 0x00000002
CERT_IMS_EARC Ecosystem Authentication Certificate, RSA Key 0x00000003
CERT_IMS_TAPC Identity Authentication Certificate, Primary Key 0x00000004
CERT_IMS_IASC Identity Authentication Certificate, Secondary Key 0x00000005
CERT_IMS_TARC Identity Authentication Certificate, RSA Key 0x00000006

(All other values are reserved) 0x00000007..0x Tt

Table 10.69: Component Authentication Certificate Classes

Offset Field Size Value Description
0 cert_class 4 Number Class of the desired certificate as present in the Table 10.69
4 cert_id 4 Number 1D of the desired certificate

Table 10.70: Component Authentication Get IMS Certificate Size Request

e If the result_code is not CERT_FOUND, the value of cert_data is undefined and shall be ignored.

e If the result_code is CERT_FOUND, the cert_data field shall contain the certificate. AP shall determine
the size of the certificate by the size of the Response payload minus the size of the all other fields in
the Response payload.

Greybus Component Authentication Authenticate Operation

The Greybus Component Authentication Authenticate Operation may be used by the AP to send a Com-
ponent Authentication challenge to an Interface and retrieve a Component Authentication response from
it.

To authenticate an Interface, the AP shall prepare a Greybus Component Authentication Authenticate
Request and send it to the Interface. The receiving Interface shall compute a auth_response, perform a
digital signature calculation covering the auth_response, and send both auth_response and signature back to
the AP in a Greybus Component Authentication Authenticate Response.

To complete an authentication decision, the AP shall validate the digital signature in the Response using a
validation key obtained from an appropriate certificate.

The receiving Interface shall complete its digital signature calculation and return a Response to the AP
within an implementation-defined time interval. If the AP does not receive a Response within that time,
the AP shall recognize a timeout. The AP may treat timeout as an error, or may repeat the Authenticate
Operation.

Offset Field Size Value Description
0 result_code 1 Number Result code
1 cert_data variable data Byte array Content of the desired certificate

Table 10.71: Component Authentication Get IMS Certificate Size Response

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 171

Result Code Description Value
CERT_FOUND Certificate was located as requested 0x00
CERT_CLASS_INVALID The specified cert_class is not valid 0x01
CERT_CORRUPT The storage for certificates is corrupted 0x02
CERT_NOT_FOUND No certificate of the specified class was found 0x03

(All other values are reserved) 0x04..0xff

Table 10.72: Component Authentication Certificate Result Codes

Offset Field Size Value Description

0 auth_type 4 Number Type of authentication for response

4 endpoint_uid 8 Data Endpoint Unique ID of target Interface
12 challenge 32 Data Cryptographic challenge value

Table 10.73: Component Authentication Authenticate Request

Greybus Component Authentication Authenticate Request

The Greybus Component Authentication Authenticate Request contains a four-byte field, auth_type, an
eight-byte field, endpoint_uid, and a 32-byte field, challenge. The auth_type field shall be set to one of the
valid values in Table 10.74. The endpoint_uid field shall be set to he endpoint_uid of the Interface, which shall
have been previously determined by a Greybus Component Authentication Get Endpoint UID Operation. For
auth_type of AUTH_IMS_PRI, AUTH_IMS_SEC, and AUTH_IMS_RSA, the challenge field shall be set to a
32-byte cryptographically random challenge value.

Several types of authentication are supported, as defined in Table 10.74.

The authentication type in the Request determines the cryptographic algorithm and which class(es) of
certificates may be used to validate the Response, as described in table 10.75.

Greybus Component Authentication Authenticate Response

The Greybus Component Authentication Authenticate Response contains a one-byte field, result_code, a 64-
byte field, auth_response, and an arbitrary-size data block, auth_response_sig. The size of auth_response_sig
shall not exceed 320 bytes.

The result_code field shall identify one of the conditions defined in Table 10.77. If the result_code is not
CR_SUCCESS, the values of auth_response and auth_response_sig are undefined and shall be ignored.

The remainder of this section describes processing for auth_type values of AUTH_IMS_PRI, AUTH_IMS_SEC,
and AUTH_IMS_RSA.

Upon receiving a Component Authentication Authenticate Request, the Interface shall perform several val-
idation checks (the order of which is unspecified) and calculate a signature. The Interface shall check that:

Type Description Value

AUTH_INVALID Invalid 0x00000000
AUTHIMS_PRI Authenticate using the IMS-derived Endpoint Primary Signing Key (EPSK) 0x00000001
AUTHIMS_SEC Authenticate using the IMS-derived Endpoint Secondary Signing Key (ESSK) 0x00000002
AUTHIMS_RSA Authenticate using the IMS-derived Endpoint RSA Private Key (ERRK) 0x00000003

(All other values are reserved) 0x00000004..0xfFFTE

Table 10.74: Component Authentication Protocol Authentication Types

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 172

Auth. Type Algorithm Certificate Classes for Authentication

AUTH_IMS_ PRI ed448 [ED448] CERT_IMS_EAPC, CERT_IMS_TASC
AUTH_IMS_SEC ed25519 [ED25519] CERT_IMS_EASC, CERT_IMS_IASC
AUTH_IMS_RSA RSA 2048 [RSA] CERT_IMS_EARC, CERT_IMS_TARC

Table 10.75: Component Authentication Types and Certificates

Offset Field Size Value Description

0 result_code 1 Number Result code

1 auth_response 64 Byte array auth_response from module

65 auth_response_sig variable data Byte array Digital signature of auth_response

Table 10.76: Component Authentication Authenticate Response

e The auth_type specifies an authentication type that it is prepared to perform, and shall return a
Response with a result_code of CR_.BAD_TYPE if not.

e Its own endpoint unique ID matches the endpoint_uid field in the Request, and shall return a Response
with a result_.code of CR-WRONG_EP if not.

e It has access to the signing key needed to perform the signature calculation, and shall return a Response
with a result_code of CR_NO_KEY if not.

Following the validation steps, the Interface shall perform a digital signature calculation using the designated
key. If an error occurs performing this calculation, the Interface shall return a Response with a result_code
of CR_SIG_FAIL.

The Interface shall calculate the digital signature by preparing a 64-byte response buffer in which the first
32 bytes are a copy of the first 32 bytes of the challenge parameter in the Request, the next 24 bytes are
a cryptographically random nonce value calculated by the Interface, the next 8 bytes are the endpoint_uid
of the Interface. The Interface shall calculate the digital signature of the 64-byte response buffer using the
SHA-256 hash algorithm [FIPS180] and the digital signature algorithm identified in Table 10.75.

Having calculated the digital signature, the Interface shall send a Response in which the result_code is
CR_SUCCESS, the auth_response is a copy of the response buffer, and the auth_response_sig contains digital
signature output.

Upon receipt of a Greybus Component Authentication Authenticate Response, if the result_code is not
CR_SUCCESS, the AP shall treat the authentication Operation as having failed. If result_code is
CR_SUCCESS, the AP shall perform several validation checks (the order of which is unspecified) The AP
shall check that:

e The first 32 bytes of the auth_response field are equal to the the challenge it sent.
e Bytes 56-63 of the auth_response field are equal to the endpoint_uid of the request.

Result Description Value
CR_SUCCESS Authentication response and signature generated successfully 0x00
CR_BAD_TYPE The specified auth_type is invalid 0x01
CR-WRONG_EP The supplied endpoint_uid does not match the target Interface 0x02
CR.NO_KEY The Interface cannot access the required signing key 0x03
CR_SIG_FAIL The requested signature could not be calculated 0x04

(All other values are reserved) 0x05..0xff

Table 10.77: Component Authentication Challenge/Response Result Codes

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 173

e The size of auth_response_sig, determined by the size of the Response payload minus the size of the all
other fields in the Response payload, is non-zero and no greater than 320 bytes.

Having performed the validation checks, the AP shall then locate a certificate containing the validation key
for the signature (for example, one obtained from a Greybus Component Authentication Get IMS Certificate
Operation, which may occur at any time before the validation calculation, either before or after the Greybus
Component Authentication Authenticate Operation). Appropriate certificate(s) may also have been obtained
by out of band mechanisms, or found in local storage managed by the AP, depending on system architecture.
If the certificate cannot be located or obtained, then the validation fails.

The AP shall then validate that the common name (CN) in the certificate appropriately incorporates the
hexadecimal representation of the endpoint_uid value for the Interface and that it otherwise matches the
certificate naming conventions (for example, to perform identity authentication, the certificate must also
incorporate the hexadecimal representations of the Ara VID and Ara PID attributes of the Interface in an
appropriate format). If the certificate name does not meet requirements, then the validation fails.

Finally, the AP shall use the public key from that certificate to attempt to validate that the signature in the
signature field is a valid signature of the auth_response field.

If any errors occur in the validation checks, or the signature validation calculation fails, the authentication
has failed; otherwise, it has succeeded.

Note that a single Response can be validated with respect to multiple different certificates, depending on goal
of the authentication (e.g., ecosystem authentication, identity authentication). The different certificates will
contain the same (public) validation key but will be distinguished by the Common Name in the certificate.

Firmware Download Protocol

The Greybus Firmware Download Protocol can be used by an Interface to communicate with the AP and
receive firmware packages over UniPro.

If an Interface requires to download a firmware package, it shall first request the AP to find a firmware
package for the Interface using a Greybus Firmware Download Find Firmware Operation. This may be
followed by one or more Greybus Firmware Download Protocol Fetch Firmware Operations to receive the
firmware package block by block. Finally the Interface shall request the AP to release the firmware package
using a Greybus Firmware Download Release Firmware Operation.

Conceptually, the Operations in the Greybus Firmware Download Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int find firmware(u8 firmware tag[10], u8 format[10], u8 *firmware_id, u32 *size);
This Operation can be initiated only by an Interface to request the AP to find a firmware package for
the Interface.

int fetch_firmware(u8 firmware_id, u32 offset, u32 size, void *data);
This Operation can be initiated only by an Interface to fetch a block of data from the AP in the
firmware package previously requested from the AP.

int release_firmware(u8 firmware_id);
If the Interface has requested the AP to find a firmware package using a Greybus Firmware Download
Find Firmware Operation earlier, it shall use this Operation to request the AP to release that firmware
package.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 174

Firmware Operation Type Request Value Response Value

CPort Shutdown 0x00 0x80
Find Firmware 0x01 0x81
Fetch Firmware 0x02 0x82
Release Firmware 0x03 0x83
(all other values reserved) 0x04..0x7e 0x84..0xfe
Invalid 0x7f Oxff

Table 10.78: Firmware Download Protocol Operation Types

Greybus Firmware Download Operations

All Firmware Download Protocol Operations are initiated using a Greybus Firmware Download Protocol
Request message, which results in a matching Response message. The Request and Response messages for
each Operation are defined below.

Table 10.78 defines the Greybus Firmware Download Protocol Operation types and their values. Both the
Request type and the Response type values are shown below.

Greybus Firmware Download CPort Shutdown Operation

The Greybus Firmware Download CPort Shutdown Operation is the Common Greybus Protocol CPort
Shutdown Operation for the Firmware Download Protocol.

Greybus Firmware Download Find Firmware Operation
The Greybus Firmware Download Find Firmware Operation Request can be sent only by an Interface to
request the AP to find a firmware package for the Interface.

The Interface provides a firmware_tag and its format to the AP as part of the request, which may be used
by the AP in an implementation-defined way to find the firmware package for the Interface.

In response, the AP locates a matching firmware package and returns to the Interface the size of the firmware
package and a unique firmware_id associated with the firmware package.

The same firmware_id shall be sent by the Interface as part of the Fetch Firmware or the Release Firmware
Requests sent later.

This may be followed by one or more Greybus Firmware Download Fetch Firmware Operation Requests from
the Interface to the AP, in order to receive the firmware package block by block.

Once the firmware is successfully requested by the Interface using a Greybus Firmware Download Find
Firmware Operation, the AP shall support all valid Greybus Firmware Download Fetch Firmware Operation
Requests until the Interface initiates a Greybus Firmware Download Release Firmware Operation or the AP
times out waiting for a request from the Interface.

An Interface may request the AP to find one or more firmware packages using separate Greybus Firmware
Download Find Firmware Operations and fetch them in parallel by using the firmware_id received from the
AP earlier in the Find Firmware Response.

The AP may impose implementation-defined timeouts for:
e The time interval between the Find Firmware Response and the first Fetch Firmware Request.

e The time interval between a Fetch Firmware Response and the next Fetch Firmware Request.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 175

Offset Field Size Value Description
0 firmware tag 10 [US-ASCII] A null-terminated character string used to identify the firmware package.
10 format 10 [US-ASCII] A null-terminated character string used to identify the format of firmware package.

Table 10.79: Firmware Download Find Firmware Request

Offset Field Size Value Description
0 firmware_id 1 Number Unique firmware package identifier.
1 size 4 Number Size of the firmware package in bytes.

Table 10.80: Firmware Download Find Firmware Response

e The time interval between a Fetch Firmware Response and the Release Firmware Request.
e The time interval between the Find Firmware Response and the Release Firmware Request.

If any of the above timeouts occur, the AP shall respond with GB_OP_TIMEOUT in the status byte of the
Response header, to the next Request from the Interface that uses the same firmware_id for the which the
AP has timed out.

Greybus Firmware Download Find Firmware Request

Table 10.79 defines the Greybus Firmware Download Find Firmware Request payload. The Request contains
a 10-byte firmware_tag and a 10-byte format of the firmware package requested for download. This may be
used by the AP in an implementation-defined way to find the requested firmware package.

Greybus Firmware Download Find Firmware Response

Table 10.80 defines the Greybus Firmware Download Find Firmware Response payload. The Response
contains a one-byte firmware_id and a four-byte size of the firmware package in bytes.

The firmware_id is unique and the same firmware_id shall not be used by the AP in another Greybus Firmware
Download Find Firmware Operation Request, until the Interface has initiated the Greybus Firmware Down-
load Release Firmware Operation with the same firmware_id.

If the AP fails to find a firmware package for the Interface, it shall return GB_OP_INVALID in the status
byte of the Response header.

Greybus Firmware Download Fetch Firmware Operation

The Greybus Firmware Download Fetch Firmware Operation Request can be sent only by an Interface to
request the AP to provide a block of data, from the firmware package the Interface has previously requested
from the AP.

The Interface sends to the AP the firmware_id of the firmware package, received as part of the Find Firmware
Response earlier, the offset within the firmware package, and the size in bytes of the block of data to fetch
from the offset.

Unless the AP finds the Request to be invalid or if the AP hasn’t timed out waiting for a Fetch Firmware
Request, it shall respond with exactly the number of bytes requested by the Interface, from the firmware
package associated with the firmware_id.

The AP may consider a Request as invalid if:

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 176

Offset Field Size Value Description

0 firmware_id 1 Number Unique firmware package identifier.
1 offset 4 Number Offset into the firmware package.

5 size 4 Number Size of block of data in bytes.

Table 10.81: Firmware Download Fetch Firmware Request

Offset Field Size Value Description

0 data size Data Block of data within the firmware package.

Table 10.82: Firmware Download Fetch Firmware Response

e The AP couldn’t associate the firmware_id sent by the Interface to an already requested firmware
package.

e The Interface tries to read past the end of the firmware package.
e Size field in the Request is set to 0.

The Interface may send one or more Fetch Firmware Requests to receive the firmware package. The access
to the firmware package isn’t required to be sequential and the Interface may download the firmware package
in any order. The Interface may download a section of the firmware package multiple times.

Greybus Firmware Download Fetch Firmware Request

Table 10.81 defines the Greybus Firmware Download Fetch Firmware Request payload. The Request contains
a one-byte firmware_id associated with the firmware package, a four-byte offset within the firmware package,
and a four-byte size of the block of data requested in bytes.

The requested size must be less than or equal to the firmware size received with the Find Firmware Response,
minus the requested offset into the firmware package.

The Interface is responsible for tracking its offset into the firmware package as needed.

Greybus Firmware Download Fetch Firmware Response

Table 10.82 defines the Greybus Firmware Download Fetch Firmware Response payload. The Response
contains the block of data requested by the Interface.

The AP may return GB_OP_INVALID in the status byte of the Response header, if the AP finds the Request
sent by an Interface as invalid, as described in the Greybus Firmware Download Fetch Firmware Operation
section.

Upon receiving a Response with status equal to GB_OP_INVALID, the Interface may resend this Request
after verifying its parameters.

The AP may return GB_OP_TIMEOUT in the status byte of the Response header, if the AP has timed out
waiting for the Fetch Firmware Request.

If this occurs, the firmware id is no longer valid. Upon receiving a Response with status equal to
GB_OP_TIMEOUT, the Interface shall not send additional Fetch Firmware Requests with the same
firmware_id, unless a subsequent Greybus Firmware Download Find Firmware Operation Response includes
that firmware_id. The Interface may initiate another Greybus Firmware Download Find Firmware Operation
with the same firmware_tag in order to attempt to subsequently recover from the timeout and retrieve the
same firmware package.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 177

Offset Field Size Value Description

0 firmware_id 1 Number Unique firmware package identifier.

Table 10.83: Firmware Download Release Firmware Request

Greybus Firmware Download Release Firmware Operation
The Greybus Firmware Download Release Firmware Operation Request can be sent only by an Interface to
request the AP to release a firmware package it has requested earlier.

The Interface sends to the AP the firmware_id associated with the firmware package, provided earlier by the
AP in the response to the Greybus Firmware Download Find Firmware Operation.

Greybus Firmware Download Release Firmware Request

Table 10.83 defines the Greybus Firmware Download Release Firmware Request payload. The Request
contains a one-byte firmware_id associated with the firmware package to be released.

Greybus Firmware Download Release Firmware Response

The Greybus Firmware Download Release Firmware Response has no payload.

If the AP couldn’t associate the firmware_id sent by the Interface to a firmware package, then the AP shall
return GB_OP_INVALID in the status byte of the Response header.

If the AP has timed out waiting for the Release Firmware Request, it shall return GB_.OP_TIMEOUT in
the status byte of the Response header.

On any such errors, the Interface shall do nothing as the firmware package shall already have been released
by the AP.

Firmware Management Protocol

The Firmware Management Protocol can be used by the Application Processor (AP) to communicate with
an Interface to:

e Load and Validate an Interface Firmware package for an Interface.
e Prepare the Interface to enter the MODE_SWITCHING Interface Lifecycle State.
e Update Interface Backend Firmware packages on an Interface.

The Interface Firmware that requires the capability to enter the MODE_SWITCHING Interface Lifecycle
State, may provide a CPort that implements the Firmware Management Protocol.

In order to use the Firmware Management Protocol for an Interface, the Interface Manifest received by the
AP from the Interface over the Control Protocol shall contain a Bundle Descriptor with the Class Type
Firmware-Management. This Bundle shall contain one CPort Descriptor with the Protocol Type Firmware-
Management.

The Firmware Management Protocol shall not be used by the AP, if its CPort Descriptor isn’t part of the
Bundle Descriptor with the Class Type Firmware-Management.

The Firmware-Management Bundle may contain another CPort Descriptor with the Protocol Type SPI, if
the Interface contains a local SPI flash and the Interface Firmware running on the Interface is designed to

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 178

allow the AP to manage updates to the SPI flash. The AP shall communicate over this SPI CPort using the
SPI Protocol.

The Firmware-Management Bundle may contain another CPort Descriptor with the Protocol Type
Firmware-Download. The Interface Firmware may use this CPort to receive firmware packages from the
AP using the Firmware Download Protocol.

The Firmware-Management Bundle may contain another CPort Descriptor with the Protocol Type Com-
ponent Authentication Protocol (CAP). The AP may use this CPort to Authenticate the Interface.

Todo
Add Component Authentication Protocol (CAP) to Greybus Specifications.

The rest of this section defines the Firmware Management Protocol.
Conceptually, the Operations of the Greybus Firmware Management Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

Note: Below Operations are specific to the Interface Firmware for an Interface.

int interface firmware version(u8 firmware tag[10], ul6é *major, ul6 *minor);
This Operation can be initiated only by the AP to get the firmware_tag and the version of the Interface
Firmware currently running on an Interface.

int interface_firmware load_and validate(u8 request_id, u8 load.method, u8 firmware_tag[10]);
This Operation can be initiated only by the AP to instruct an Interface to load and validate an Interface
Firmware package.

int interface firmware loaded(u8 request_id, u8 status, ul6 major, ul6 minor);
If the AP has requested an Interface to load an Interface Firmware using the Greybus Firmware
Management Interface Firmware Load and Validate Operation earlier, then the Interface shall use this
Operation to inform the AP once the requested Interface Firmware package is loaded and validated by
the Interface.

Note: Below Operations are specific to the Interface Backend Firmware for an Interface.

int interface_backend firmware version(ul6 *major, ul6 *minor, u8 *status);
This Operation can be initiated only by the AP to get the current version of the Interface Backend
Firmware packages available locally with an Interface.

int interface_backend firmware_ update(u8 request_id);
This Operation can be initiated only by the AP to request an Interface to update the Interface Backend
Firmware packages.

int interface_backend firmware updated(u8 request_id, u8 status);
If the AP has requested an Interface to update an Interface Backend Firmware using the Greybus
Firmware Management Interface Backend Firmware Update Operation earlier, then the Interface shall
use this Operation to inform the AP once the update to the Interface Backend Firmware has finished.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 179

Firmware Management Operation Type Request Value Response Value

CPort Shutdown 0x00 0x80
Interface Firmware Version 0x01 0x81
Interface Firmware Load and Validate 0x02 0x82
Interface Firmware Loaded 0x03 0x83
Interface Backend Firmware Version 0x04 0x84
Interface Backend Firmware Update 0x05 0x85
Interface Backend Firmware Updated — 0x06 0x86
(all other values reserved) 0x07..0x7e 0x87..0xfe
Invalid 0x7f Oxft

Table 10.84: Firmware Management Protocol Operation Types

Offset Field Size Value Description

0 firmware_tag 10 JUS-ASCII] A null-terminated character string used to identify the Interface Firmware.
10 major 2 Number Major version number of the currently running Interface Firmware.

12 minor 2 Number Minor version number of the currently running Interface Firmware.

Table 10.85: Firmware Management Interface Firmware Version Response

Greybus Firmware Management Protocol Operations

All Firmware Management Protocol Operations are initiated using a Greybus Firmware Management Pro-
tocol Request message, which results in a matching Response message. The Request and Response messages
for each Operation are defined below.

Table 10.84 defines the Greybus Firmware Management Protocol Operation types and their values. Both
the Request type and the Response type values are shown below.

Greybus Firmware Management CPort Shutdown Operation

The Greybus Firmware Management CPort Shutdown Operation is the Common Greybus Protocol CPort
Shutdown Operation for the Firmware Management Protocol.

Greybus Firmware Management Interface Firmware Version Operation
The Greybus Firmware Management Interface Firmware Version Operation Request can be sent only by

the AP to an Interface. The Interface shall respond with the firmware_tag, and the version of the Interface
Firmware currently running on the Interface.

Greybus Firmware Management Interface Firmware Version Request

The Greybus Firmware Management Interface Firmware Version Request has no payload.

Greybus Firmware Management Interface Firmware Version Response

Table 10.85 defines the Greybus Firmware Management Interface Firmware Version Response payload.
The Response contains a 10-byte firmware_tag, and two 2-byte version numbers, major and minor. The
firmware_tag may be used by the AP in an implementation-defined way to identify the currently running
Interface Firmware.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 180

Greybus Firmware Management Interface Firmware Load and Validate Operation

The Greybus Firmware Management Interface Firmware Load and Validate Operation Request can be sent
only by the AP to an Interface.

On receiving this Request, the Interface shall respond immediately and start loading the requested Interface
Firmware package using the specified load_method and then validate it using implementation-defined means.
Once the Interface has loaded and validated the Interface Firmware package or if the Interface failed to
load or validate the Interface Firmware package, it shall initiate a Greybus Firmware Management Interface
Firmware Loaded Operation.

The Interface shall load at most one Interface Firmware package at a time. A Request to load a new Interface
Firmware package may replace the Interface Firmware package loaded earlier.

The process of validating an Interface Firmware package is implementation-defined.

The AP sends a unique request_id to the Interface and the Interface shall use the same request_id while
sending the Greybus Firmware Management Interface Firmware Loaded Operation Request.

The AP may wait for an implementation-defined time interval, for the Interface to initiate a Greybus
Firmware Management Interface Firmware Loaded Operation. If the AP times out waiting for it, the AP
may re-initiate this Operation with a new request_id.

If an Interface receives another Interface Firmware Load and Validate Request with a different request_id,
before it has initiated a Greybus Firmware Management Interface Firmware Loaded Operation for the earlier
Load and Validate Firmware Request, then the Interface shall abort the previous Load and Validate Firmware
Request and start servicing the new Request.

The AP may initiate this Operation any number of times.

If the AP is using the Firmware Download Protocol to prepare an Interface to enter the MODE_SWITCHING
Interface Lifecycle State, then the AP shall initiate the Greybus Control Mode Switch Operation only after
it has received a successful Greybus Firmware Management Interface Firmware Loaded Operation Request
from the Interface.

Greybus Firmware Management Interface Firmware Load and Validate Request

The Greybus Firmware Management Interface Firmware Load and Validate Request contains a one-byte
request_id, a one-byte load_method, which identifies the method to be used to load the Interface Firmware,
and a 10-byte firmware_tag of the Interface Firmware that is requested to be loaded. The firmware_tag may
be used by the Interface in an implementation-defined way to identify the requested Interface Firmware
package.

The request_id is unique and the same request_id shall not be used by the AP in another Greybus Firmware
Management Interface Firmware Load and Validate Operation Request until the Interface has initiated a
Greybus Firmware Management Interface Firmware Loaded Operation with the same request_id.

If the load_method specified in the Request is set to FIRMWARE_LOAD_METHOD_UNIPRO, then the
Interface shall receive the Interface Firmware package using the Firmware Download Protocol and send the
same firmware_tag value received from the AP to the Greybus Firmware Download Find Firmware Operation
Request.

If load_method specified in the Request from the AP is set to FIRMWARE_LOAD_METHOD_INTERNAL,
then the Interface shall load the Interface Firmware package available locally with the Interface, in an
implementation-defined way.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 181

Offset Field Size Value Description

0 request_id 1 Number Unique Request Identifier.

1 load _method 1 Number Possible values of load_method are specified in table 10.87.

2 firmware_tag 10 [US-ASCII] A null-terminated character string used to identify the Interface Firmware.

Table 10.86: Firmware Management Interface Firmware Load and Validate Request

Interface Firmware Load Method Brief Description Value
FIRMWARE_LOAD _METHOD_INVALID Invalid 0x00
FIRMWARE_LOAD_METHOD_UNIPRO Load Interface Firmware package over UniPro. 0x01
FIRMWARE_LOAD METHOD_INTERNAL Load Interface Firmware package internally available to the Interface. 0x02
(Reserved Range) 0x03..0xFF

Table 10.87: Firmware Management Interface Firmware Load Method

Greybus Firmware Management Interface Firmware Load and Validate Response

The Greybus Firmware Management Interface Firmware Load and Validate Response has no payload.

Greybus Firmware Management Interface Firmware Loaded Operation

The Greybus Firmware Management Interface Firmware Loaded Operation Request can be sent only by an
Interface to indicate to the AP that an earlier Interface Firmware Load and Validate Operation Request from
the AP has finished.

On receiving this Request, the AP may check the status byte from the Request and compare the version
of the loaded Interface Firmware with the Interface Firmware packages available with the AP. The AP
may subsequently choose to initiate another Greybus Firmware Management Interface Firmware Load and
Validate Operation, to load a new Interface Firmware package.

If the AP is using the Firmware Download Protocol to prepare an Interface to enter the MODE_SWITCHING
Interface Lifecycle State, then the AP shall initiate the Greybus Control Mode Switch Operation only after
it has received a successful Greybus Firmware Management Interface Firmware Loaded Operation Request
from the Interface.

Greybus Firmware Management Interface Firmware Loaded Request

The Greybus Firmware Management Interface Firmware Loaded Request contains a one-byte request_id,
a one-byte status of the loaded Interface Firmware package, a two-byte major version, a two-byte minor
version.

The value of the request_id field shall be set to the value of the request_id field sent by the AP in the Greybus
Firmware Management Interface Firmware Load and Validate Operation Request, in response to which the
Interface is sending this Request.

If the AP has initiated another Greybus Firmware Management Interface Firmware Load and Validate
Operation before receiving a Greybus Firmware Management Interface Firmware Loaded Operation Response
from the Interface for the previous Greybus Firmware Management Interface Firmware Load and Validate
Operation Request, then the AP shall ignore the Interface Firmware Loaded Request with the request_id
matching the request_id of the first Greybus Firmware Management Interface Firmware Load and Validate
Operation Request.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 182

Offset Field Size Value Description

0 request_id 1 Number Unique Request Identifier.

1 status 1 Number Status of the Interface Firmware loading and validation is defined by the table 10.89 and is set by the Interface in an implementation-defined way.
2 major 2 Number Major version number of the loaded Interface Firmware package.

4 minor 2 Number Minor version number of the loaded Interface Firmware package.

Table 10.88: Firmware Management Interface Firmware Loaded Response

Interface Firmware Status Brief Description Status Value
FW_STATUS_LOAD_FAILED Failed to Load the Interface Firmware package. 0x00
FW_STATUS_UNVALIDATED Loaded Interface Firmware Package is not signed. 0x01
FW_STATUS_VALIDATED Loaded Interface Firmware Package is signed and is validated by the Interface. 0x02
FW_STATUS_VALIDATION_FAILED Loaded Interface Firmware Package is signed and the Interface failed to validate it. 0x03
(Reserved Range) 0x04..0xFF

Table 10.89: Firmware Management Interface Firmware Loaded Status

Greybus Firmware Management Interface Firmware Loaded Response

The Greybus Firmware Management Interface Firmware Loaded Response has no payload.

Greybus Firmware Management Interface Backend Firmware Version Operation

The Greybus Firmware Management Interface Backend Firmware Version Operation Request can be sent
only by the AP to an Interface, to request the version of the Interface Backend Firmware Packages available
locally with the Interface. The same version shall apply to all the Backend Firmware Packages.

Greybus Firmware Management Interface Backend Firmware Version Request

The Greybus Firmware Management Interface Backend Firmware Version Request has no payload.

Greybus Firmware Management Interface Backend Firmware Version Response

Table 10.90 defines the Greybus Firmware Management Interface Backend Firmware Version Response pay-
load. The Response contains two 2-byte numbers, major and minor, and a 1-byte status.

The major and minor numbers shall be ignored by the AP if the status contains value other than

FW_STATUS_SUCCESS.

If the Interface doesn’t require any Interface Backend Firmware package for its functioning, then the Interface
shall set the status to FW_STATUS_NOT_SUPPORTED.

If the Interface doesn’t have all Interface Backend Firmware package available with it, then it shall set the
status to FW_STATUS_NOT_AVAILABLE.

Otherwise, the Interface shall set both major and minor fields in its Response with the major and minor
version of its Interface Backend Firmware packages.

The Interface may require some time before providing the version of the Interface Backend Firmware pack-
ages. This may happen, for example, if the Interface needs to boot the Backend Device Processors before
getting the version of the available Interface Backend Firmware. On such an event, the Interface shall set
the status to FW_STATUS_RETRY.

On receiving FW_STATUS_RETRY from the Interface, the AP may re-initiate this Operation after an
implementation-defined time interval. The AP may keep sending this Request until the time it receives the
Interface Backend Firmware version, or the Request fails and returns some other error value.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 183

Offset Field Size Value Description

0 major 2 Number Major version number of the Interface Backend Firmware packages.
2 minor 2 Number Minor version number of the Interface Backend Firmware packages.
4 status 1 Number Status of the Interface Backend Firmware version operation is defined by the table 10.91.

Table 10.90: Firmware Management Interface Backend Firmware Version Response

Update Status Brief Description Value
FW_STATUS_INVALID Invalid Status. 0x00
FW_STATUS_SUCCESS Firmware version successfully retrieved. 0x01
FW_STATUS_NOT_AVAILABLE Firmware not available. 0x02
FW_STATUS_NOT_SUPPORTED No Backend Firmware is required for functioning of Interface. 0x03
FW_STATUS_RETRY Not ready to respond currently, retry. 0x04
FW_STATUS_FAIL_INTERNAL Failed due to internal errors. 0x05
(Reserved Range) 0x06..0xFF

Table 10.91: Firmware Interface Backend Firmware Version Status

Greybus Firmware Management Interface Backend Firmware Update Operation

The Greybus Firmware Management Interface Backend Firmware Update Operation Request can be sent
only by the AP to request an Interface, to update the Interface Backend Firmware packages.

The Interface shall update all the Interface Backend Firmware packages.

If the Interface can not service the Interface Backend Firmware Update Request or if the Interface doesn’t
require any Interface Backend Firmware for its functioning, then it shall send GB_OP_INVALID in the status
field of the Response header.

Otherwise, the Interface shall immediately respond to this Request and start downloading the Interface
Backend Firmware packages from the AP, in any order it finds suitable.

If the Interface is designed to use the Firmware Download Protocol for downloading firmware packages, then
it shall contain a CPort Descriptor with the Protocol Type Firmware-Download in its Bundle Descriptor
whose Class Type is Firmware-Management, in the Interface Manifest sent to the AP.

The rest of this section uses the Firmware Download Protocol as the Interface Backend Firmware down-
load method. The Interface may choose another implementation-defined method for receiving the Interface
Backend Firmware packages.

Once the specific Interface Backend Firmware package is updated on the Interface, the Interface shall initiate
a Greybus Firmware Management Interface Backend Firmware Updated Operation.

The AP sends a unique request_id to the Interface and the Interface shall use the same request_id while
sending the Greybus Firmware Management Interface Backend Firmware Updated Operation Request.

The same request_id shall not be used by the AP in another Greybus Firmware Management Interface Back-
end Firmware Update Operation Request until the Interface has initiated a Greybus Firmware Management
Interface Backend Firmware Updated Operation with the same request_id.

The AP may wait for an implementation-defined time interval, for the Interface to initiate a Greybus
Firmware Management Interface Backend Firmware Updated Operation. In case the AP times out wait-
ing for it, the AP may re-initiate this Operation with a different request_id.

If the Interface receives another Interface Backend Firmware Update Request before it has initiated a Grey-
bus Firmware Management Interface Backend Firmware Updated Operation for the earlier Interface Backend
Firmware Update Request, the Interface shall abort the previous Interface Backend Firmware Update Re-
quest and start servicing the new Request.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 184

Offset Field Size Value Description

0 request_id 1 Number Unique Request Identifier.

Table 10.92: Firmware Management Interface Backend Firmware Update Request
The Module can download Interface Backend Firmware packages in parallel on receiving this request.

Greybus Firmware Management Interface Backend Firmware Update Request

Table 10.92 defines the Greybus Firmware Management Interface Backend Firmware Update Request pay-
load. The Request contains a one-byte request_id.

The request_id is unique and the same request_id shall not be used by the AP in another Greybus Firmware
Management Interface Backend Firmware Update Operation Request until the Interface has initiated a
Greybus Firmware Management Interface Backend Firmware Updated Operation with the same request_id.

Greybus Firmware Management Interface Backend Firmware Update Response

The Greybus Firmware Management Interface Backend Firmware Update Response has no payload.

Greybus Firmware Management Interface Backend Firmware Updated Operation

The Greybus Firmware Management Interface Backend Firmware Updated Operation Request can be send
only by an Interface to inform the AP that the Interface Backend Firmware update to a specific Inter-
face Backend Firmware package has finished. This shall be sent by the Interface after it has downloaded
the requested Interface Backend Firmware package using the Firmware Download Protocol and updated it
internally in an implementation-defined way.

The Interface shall also initiate this Operation if it has failed to update the requested Interface Backend
Firmware package. It shall specify the reason of the failure in the status field of the Request.

The AP may initiate another Greybus Firmware Management Interface Backend Firmware Update Operation
now.

Greybus Firmware Management Interface Backend Firmware Updated Request

Table 10.93 defines the Greybus Firmware Management Interface Backend Firmware Updated Request pay-
load. The Request contains a one-byte request_id, and a one-byte status of the Firmware update.

The value of the request_id field shall be set to the value of the request_id field sent by the AP in the Greybus
Firmware Management Interface Backend Firmware Update Operation Request, in response to which the
Interface is sending this Request.

If the AP initiates another Greybus Firmware Management Interface Backend Firmware Update Operation
before receiving a Greybus Firmware Management Interface Backend Firmware Updated Operation Request
from the Interface for the previous Greybus Firmware Management Interface Backend Firmware Update
Operation Request, then the AP shall ignore the Interface Backend Firmware Updated Request with the
request_id matching the request_id of the first Greybus Firmware Management Interface Backend Firmware
Update Operation Request.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 185

Offset Field Size Value Description

0 request_id 1 Number Unique Request Identifier.
1 status 1 Number Status of the Interface Backend Firmware update is defined by the table 10.94 and is set by the Interface in an implementation-defined way.

Table 10.93: Firmware Management Interface Backend Firmware Updated Request

Update Status Brief Description Value
FW_STATUS_INVALID Invalid Status. 0x00
FW_STATUS_SUCCESS Interface Backend Firmware package successfully updated. 0x01
FW_STATUS_FAIL_FIND Failed to find Interface Backend Firmware package. 0x02
FW_STATUS FAIL_ FETCH Failed to fetch Interface Backend Firmware package. 0x03
FW_STATUS_FAIL_WRITE Failed to write downloaded Interface Backend Firmware package. 0x04
FW_STATUS FAIL_ INTERNAL Failed due to internal errors. 0x05
FW_STATUS_RETRY Not ready to respond currently, retry. 0x06
FW_STATUS_NOT_SUPPORTED No Backend Firmware is required for functioning of Interface. 0x07
(Reserved Range) 0x08..0xFF

Table 10.94: Firmware Interface Backend Firmware Update Status

Greybus Firmware Management Interface Backend Firmware Updated Response

The Greybus Firmware Interface Backend Firmware Updated Response has no payload.

HID Protocol

This section defines the operations used on a connection implementing the Greybus Human Interface Device
(HID) Protocol. The HID class is used primarily for devices that take input from humans or may give output
to humans. Typical examples of HID class devices include:

e Keyboards and pointing devices

e Front panel controls, like: knobs, buttons, switches, etc.
e Steering wheels, rudder pedals found on gaming devices.
e Buttons, touchscreen found on phones.

e Bar-code readers, thermometers, or voltmeters.

The Greybus HID Protocol uses descriptors and reports to interact with a HID device. A HID Descriptor
defines all capabilities of a HID device. Before exchanging data with a HID device, the AP Module can
configure a HID device based on these capabilities by sending Feature Reports. Data exchange between the
AP Module and a HID device are implemented by sending Input or Output Reports.

This document focuses on how the HID protocol is implemented over Greybus. The HID Protocol (as
implemented over USB) is well defined by [HIDO01].

Greybus HID Descriptors

The following section identifies the key data structures (referred to as HID Descriptors) that need to be
exchanged between the host and the device during initialization.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 186

HID Descriptor

The HID Descriptor is the top-level mandatory descriptor that every Greybus based HID device must have.
The purpose of the HID Descriptor is to define all capabilities of the HID device with the host. These
attributes describe the version of the HID Protocol the HID device is compliant with, the length of HID
Descriptors, and other capabilities of the device. Please refer to Table 10.96 for further details.

HID Report Descriptor

A HID Report Descriptor describes the data generated by the HID device, and how to interpret that data.
Details of the HID Report Descriptor are outside of the scope of this document and are defined in [HID01].

HID Report Protocol

The Report is the fundamental block exchanged between the host and the device. Reports are well defined
by [HID(01], and the the same will be followed here.

HID Input Report
The input reports are generated on the device and are sent from device to host. This can be requested
synchronously or asynchronously.

In the asynchronous case, when the device has active data it wishes to report to the host, it will generate
an data request towards the host. When the host receives the receive request, it is responsible for reading
the data from the receive request.

In the synchronous case, the host can generate a get-report request to HID device, in response to which the
device must respond with data.

HID Output Report

The output report is generated on the host and is sent from host to device over the Greybus transport.
When the host has active data it wishes to report to the device, it must generate a set-report request.

HID Feature Report
The feature report is a bidirectional report and can be exchanged between the host and the device. They
are normally used by the host to program the device into different configurations.

For the host to get/set a feature-report on the device, it must use the get-report and set-report requests
described later.

Greybus HID Operations

Greybus HID Protocol allows an AP to manage a HID device present on a module. The Protocol consists
of few basic operations, whose request and response message formats are defined here.

Conceptually, the operations in the greybus HID Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 187

int

int

int

int

int

int

int

HID Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80
Reserved 0x01 0x81

Get Descriptor 0x02 0x82

Get Report Descriptor 0x03 0x83
Power On 0x04 0x84
Power Off 0x05 0x85

Get Report 0x06 0x86

Set Report 0x07 0x87

IRQ Event 0x08 0x88

(all other values reserved) 0x09..0x7e 0x89..0xfe
Invalid Ox7f Oxff

Table 10.95: HID Operation Types

get_descriptor(struct gb_hid desc_response *desc) ;
Returns HID Descriptor, that specifies details of the HID device.

get_report_descriptor(u8 *report_desc);
Returns a HID Report Descriptor, defined by [HID01].

power_on(void);
Power-on the HID device.

power_off (void);
Power-off the HID device.

get_report(u8 *report);
Gets input or feature report from device to host synchronously.

set_report(u8 *report);
Sets output or feature report from host to device synchronously.

irqg_event (u8 *report) ;
Input report sent from device to host asynchronously.

Greybus HID Message Types

Table 10.95 describes the Greybus HID operation types and their values. A message type consists of an
operation type combined with a flag (0x80) indicating whether the operation is a request or a response.

Greybus HID CPort Shutdown Operation

The Greybus HID CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the HID Protocol.

Greybus HID Get Descriptor Operation

The Greybus HID Get Descriptor operation is issued on the host and the HID device must respond with an
HID Descriptor.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 188

Offset Field Size Value Description

0 length 1 Number Length of this descriptor

1 report_desc_length 2 Number Length of the report descriptor

3 hid_version 2 Number Version of the HID Protocol, as defined by [HID01]
5 product_id 2 Number Product ID of the device

7 vendor_id 2 Number Vendor ID of the device

9 country_code 1 Number Country code of the localized hardware; see [HID01]

Table 10.96: Greybus HID Descriptor

Greybus HID Get Descriptor Request

The Greybus HID Get Descriptor request is sent from host to device and it has no payload.

Greybus HID Get Descriptor Response

The Greybus HID Get Descriptor response is sent from device to host and is described in Table 10.96.

Greybus HID Get Report Descriptor Operation

The Greybus HID Get Report Descriptor operation is issued on host and the HID device must respond with
an report descriptor as defined by [HIDO1].

Greybus HID Get Report Descriptor Request

The Greybus HID Get Report Descriptor request is sent from host to device and the request has no payload.

Greybus HID Get Report Descriptor Response

The Greybus HID Get Report Descriptor response is sent from device to host and it consists of a HID Report
Descriptor defined by [HIDO01].

Greybus HID Power ON Operation

The Greybus HID power-on operation is sent from host to device to power on the HID device.

Greybus HID Power ON Request

The Greybus HID power-on operation request has no payload.

Greybus HID Power ON Response

The Greybus HID power-on response has no payload.

Greybus HID Power OFF Operation

The Greybus HID power-off operation is sent from host to device to power off the HID device.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 189

Offset Field Size Value Description
0 report_type 1 Number Greybus HID Report Type
1 report_id 1 Number Report ID defined by [HIDO1]

Table 10.97: HID Get Report Request

HID Report Type Value

Input Report 0x0000
Output Report 0x0001
Feature Report 0x0002

Table 10.98: HID ReportType

Greybus HID Power OFF Request

The Greybus HID power-off operation request has no payload.

Greybus HID Power OFF Response

The Greybus HID power-off response has no payload.

Greybus HID Get Report Operation

The Greybus HID get report operation allows the host to fetch feature or input report synchronously from
a HID device.

The get-report command is a mandatory request (if the device contains Input or Feature reports) that the
host can issue to the device at any time after initialization to get a singular report from the device. The
device is responsible for responding with the last known input or feature for the report id. If the value has
not been set for that report yet, the device must return 0 for the length of report item.

Get-report is often used by applications on startup to retrieve the current state of the device rather than
waiting for the device to generate the next Input/Feature Report.

Greybus HID Get Report Request

The Greybus HID get report request contain 1-byte report-type and report-id as defined by Table 10.97.

Greybus HID Report Type

Table 10.98 describes the defined HID report type values defined for Greybus HID devices.

Greybus HID Get Report Response

The Greybus HID Get Report response returns report as defined by [HIDO01].

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 190

Offset Field Size Value Description

0 report_type 1 Number Greybus HID Report Type

1 report_id 1 Number Report ID defined by [HIDO1]
2 report Data Report defined by [HID01]

Table 10.99: HID Set Report Request

Greybus HID Set Report Operation

The Greybus HID set report operation allows the host to send feature or output report synchronously to a
HID device.

The set-report command is a specific request that the host may issue to the device at any time after
initialization to set a singular report on the device. The device is responsible for accepting the value provided
in the operation and updating its state.

Greybus HID Set Report Request

The Greybus HID set report request contain report-type, report-id and report (as defined by [HID01], and
as defined in Table 10.99).

Greybus HID Set Report Response

The Greybus HID Set Report response has no payload.

Greybus HID IRQ Event Operation

The Greybus IRQ Event operation allows the AP to receive input-report asynchronously, when HID device
has some data available to send to the AP.

Greybus HID IRQ Event Request

When the HID device has active data it wishes to report to the host, it will generate an data request towards
the host. When the host receives the receive request, it is responsible for reading the data from the receive
request.

The format of the input-report is defined by [HIDO01].

Greybus HID IRQ Event Response

The Greybus IRQ Event response has no payload.

Lights Protocol

This section defines operations used on a connection implementing the Greybus Lights Protocol. This
Protocol allows an AP Module to control Lights devices present on a Module. The Protocol consists of some
basic operations that are defined here.

The operations in the Greybus Lights Protocol are:

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 191

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int get_lights(u8 *lights_count);
Return the number of lights devices supported. lights_id used in the following operations are sequential
increments from 0 to lights_count less one.

int get_light_config(u8 light_id, u8 *channel_count, u8 *name[32]);
Request the number of channels controlled by a light controller and its name, providing a valid iden-
tifier for that light. channel id used in the following operations are sequential increments from 0 to
channel_count less one.

int get_channel config(u8 light_id, u8 channel_id, struct gb_channel _config *config);
Request a set of configuration parameters related to a channel in a light controller. The return structure
elements shall map the fields of Greybus Lights Get Channel Config Response.

int get_channel flash config(u8 light_id, u8 channel id, struct gb_channel flash config *flash config);
Request a set of flash configuration parameters related to a channel in a light controller. The return
structure elements shall map the fields of Greybus Lights Get Channel Flash Config Response

int set_blink(u8 light_id, u8 channel id, ul6 time_on ms, ul6 time_off ms);
Set hardware blink if supported by the device, the time values are specified in milliseconds. Setting
time values to 0 shall disable blink.

int set_brightness(u8 light_id, u8 channel_id, u8 brightness);
Set the level of brightness with the specified value.

int set_color(u8 light_id, u8 channel_id, u32 color);
Set color code with the specified value.

int set_fade(u8 light_id, u8 channel_id, u32 fade_in, u32 fade_out);
Set fade in and out level with the specified values.

int set_flash intensity(u8 light_id, u8 channel_id, u32 intensity_ul);
Set flash current intensity in micro Amperes with the specified value.

int set_flash strobe(u8 light_id, u8 channel_id, u8 state);
Set flash strobe state with the specified value, value 0 means strobe off other value means strobe on.

int set_flash timeout(u8 light_id, u8 channel_id, u32 timeout_us);
Set flash timeout value in micro seconds with the specified value.

int get_flash fault(u8 light_id, u8 channel_id, *u32 fault);
Get flash fault status from controller.

Greybus Lights Message Types

Table 10.100 describes the Greybus Lights operation types and their values. A message type consists of an
operation type combined with a flag (0x80) indicating whether the operation is a request or a response.

Greybus Lights CPort Shutdown Operation

The Greybus Lights CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the Lights Protocol.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 192

Lights Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80
Reserved 0x01 0x81

Get Lights 0x02 0x82

Get Light Config 0x03 0x83

Get Channel Config 0x04 0x84

Get Channel Flash Config 0x05 0x85

Set Brightness 0x06 0x86

Set Blink 0x07 0x87

Set Color 0x08 0x88

Set Fade 0x09 0x89
Event 0x0a N/A

Set Flash Intensity 0x0b 0x8b

Set Flash Strobe 0x0c 0x8c

Set Flash Timeout 0x0d 0x8d

Get Flash Fault 0x0e 0x8e

(all other values reserved) 0x0f..0x7e 0x8f..0xfe
Invalid 0x7f Oxff

Table 10.100: Lights Operation Types

Offset Field Size Value Description

0 lights_count 1 Number Number of Lights

Table 10.101: Lights Get Lights Response

Greybus Lights Get Lights Operation

The Greybus Lights Get Lights operation allows the requester to determine the actual number of Lights
Controllers existing in the Module. If this operation fail, no further operations related to Greybus Lights
shall occur.

Greybus Lights Get Lights Request

The Greybus Lights Get Lights request message has no payload.

Greybus Lights Get Lights Response

Table 10.101 describes the Greybus Lights Get Lights response. The response payload contains a one-byte
value defining the number of lights controllers in the Module. If the value returned is 0 no further operations
related to Greybus Lights shall follow. Lights Controllers shall be numbered sequentially starting at zero
and ending in lights_count less one.

Greybus Lights Get Light Config Operation

The Greybus Lights Get Light Config operation allows the requester to collect a set of configuration pa-
rameters from a specific light controller. If this operation fail, all Module lights controllers configuration
that already had occurred should be teared down and no further operations related to Greybus Lights shall
follow.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 193

Offset Field Size Value Description
0 light_id 1 Number Light identification Number

Table 10.102: Lights Get Light Config Request

Offset Field Size Value Description
0 channel _count 1 Number Number of Channels
1 name 32 UTF-8 Light Controller name

Table 10.103: Lights Get Light Config Response

Greybus Lights Get Light Config Request

Table 10.102 describes the Greybus Lights Get Light Config request. The request supplies only the light_id
which is a unique identifier between 0 and lights_count less one.

Greybus Lights Get Light Config Response

Table 10.103 describes the Greybus Lights Get Light Config response. The response payload contains a
one-byte value defining the number of existing channels in the Controller and thirty two byte representing
the name of the Controller.

Greybus Lights Get Channel Config Operation

The Greybus Lights Get Channel Config operation allows the requester to collect a set of configuration
parameters from a specific Channel of a Light Controller. If this operation fail, all Module lights Controllers

configuration that already had occurred should be teared down and no further operations related to Greybus
Lights shall follow.

Greybus Lights Get Channel Config Request

Table 10.104 describes the Greybus Lights Get Channel Config request. The request supplies the light_id and
channel_id which are unique identifiers between 0 and lights_count or channel_count less one, respectively

Greybus Lights Get Channel Config Response

Table 10.105 describes the Greybus Lights Get Channel Config response. The response payload contains a
set of parameters representing the configuration of the channel.

Offset Field Size Value Description
0 light_id 1 Number Light identification Number
1 channel id 1 Number Channel identification Number

Table 10.104: Lights Get Channel Config Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 194

Offset Field Size Value Description

0 max_brightness 1 Number Maximum Supported Value for Brightness
1 flags 4 Bit Mask Greybus Lights Channel Flags Bits

5 color 4 Number Color code value

9 color_name 32 UTF-8 Color name

41 mode 4 Bit Mask Greybus Lights Channel Mode Bits

45 mode_name 32 UTF-8 Mode name

Table 10.105: Lights Get Channel Config Response

Symbol Brief Description Mask Value
GB_LIGHT_-CHANNEL_MULTICOLOR Channel Support more than one color 0x00000001
GB_LIGHT_CHANNEL_FADER Channel Support Hardware Fader 0x00000002
GB_LIGHT_CHANNEL_BLINK Channel Support Hardware Blink 0x00000004

(All other values reserved) 0x00000008..0x T

Table 10.106: Lights Channel Flag Bits

Greybus Lights Channel Flags Bits

Table 10.106 describes general flags associated to a Channel. Only the listed values are valid.

Greybus Lights Channel Mode Bits

Table 10.107 describes possible modes associated to a Channel. Only the listed values are valid.

Greybus Lights Get Channel Flash Config Operation
The Greybus Lights Get Channel Flash Config operation allows the requester to collect a set of configuration
parameters related to flash type modes from a specific Channel of a Light Controller. If this operation fail,

all Module lights Controllers configuration that already had occurred should be teared down and no further
operations related to Greybus Lights shall follow.

Greybus Lights Get Channel Flash Config Request

Table 10.108 describes the Greybus Lights Get Channel Config request. The request supplies the light_id and
channel_id which are unique identifiers between 0 and lights_count or channel_count less one, respectively

Greybus Lights Get Channel Flash Config Response

Table 10.109 describes the Greybus Lights Get Channel Flash Config response. The response payload
contains a set of flash type parameters representing the configuration of the channel.

Greybus Lights Set Brightness Operation

The Greybus Lights Set Brightness operation allows the requester to set brightness level of a specific Channel
to the specified value.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

195

Light Mode Brief Description Mask Value
GB_CHANNEL_MODE_NONE Channel do not represent any specific mode 0x00000000
GB_CHANNEL_MODE_BATTERY Channel can represent the battery mode 0x00000001
GB_CHANNEL_MODE_POWER Channel can represent the power mode 0x00000002
GB_CHANNEL_MODE_WIRELESS Channel can represent wifi activity mode 0x00000004
GB_CHANNEL_MODE_BLUETOOTH Channel can represent bluetooth activity mode 0x00000008
GB_CHANNEL_MODE_KEYBOARD Channel can represent light related to the keyboard — 0x00000010
GB_CHANNEL_MODE_BUTTONS Channel can represent light related to buttons 0x00000020
GB_CHANNEL_MODE_NOTIFICATION Channel can represent general notification light 0x00000040
GB_CHANNEL_MODE_ATTENTION Channel can represent general attention light 0x00000080
GB_CHANNEL_MODE_FLASH Channel can be used as a flash light device 0x00000100
GB_CHANNEL_MODE_TORCH Channel can be used as a flash torch device 0x00000200
GB_CHANNEL_MODE_INDICATOR Channel can be used as a flash indicator device 0x00000400
(Reserved Range) 0x00000800..0x00080000
GB_CHANNEL_MODE_VENDOR Channel can be used as vendor specific mode 0x00100000..0x08000000
(Reserved Range) 0x10000000..0x80000000
Table 10.107: Lights Channel Mode Bit Masks

Offset Field Size Value Description

0 light_id 1 Number Light identification Number

1 channel id 1 Number Channel identification Number

Table 10.108: Lights Get Channel Flash Config Request

Offset Field Size Value Description
0 intensity_min_uA 4 Number Minimum Value for Current Intensity in microampere
4 intensity_max_uA 4 Number Maximum Value for Current Intensity in microampere
8 intensity_step_uA 4 Number Step Value for Current Intensity in microampere
12 timeout_min_us 4 Number Minimum Value for Strobe Flash timeout in microseconds
16 timeout_max_us 4 Number Maximum Value for Strobe Flash timeout in microseconds
20 timeout_step_us 4 Number Step Value for Strobe Flash timeout in microseconds

Table 10.109: Lights Get Channel Flash Config Response

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 196

Offset Field Size Value Description

0 light_id 1 Number Light identification Number

1 channel id 1 Number Channel identification Number
2 brightness 1 Number Channel brightness level to set

Table 10.110: Lights Set Brightness Request

Offset Field Size Value Description

0 light_id 1 Number Light identification Number

1 channel_id 1 Number Channel identification Number
2 time_on_ms 2 Number Time on in milliseconds

4 time_off_ms 2 Number Time off in milliseconds

Table 10.111: Lights Set Blink Request

Greybus Lights Set Brightness Request
The Greybus Lights Set Brightness request payload contains three 1-byte values that represents light_id,
channel_id and the level of brightness to be set by the light device channel being controlled, in which 0

represent the lower level (off) and 255 represent the highest possible brightness level as defined in table
10.110.

Greybus Lights Set Brightness Response

The Greybus Lights Set Brightness response message has no payload.

Greybus Lights Set Blink Operation

The Greybus Lights Set Blink operation allows the requester to enable the blink mode of a specific Channel.
Setting time_on and time_off to 0 or setting brightness level to a fixed value shall disable blink.

Greybus Lights Set Blink Request
The Greybus Lights Set Blink request payload contains a two 1-byte values that represent the light_id and

channel_id, more two 2-byte values that represents the duration in milliseconds of the on and off period
during the blink to be set by the light device channel being controlled, as defined in table 10.111.

Greybus Lights Set Blink Response

The Greybus Lights Set Blink response message has no payload.

Greybus Lights Set Color Operation

The Greybus Lights Set Color operation allows the requester to set a value for a color space of a specific
Channel to the specified value.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 197

Offset Field Size Value Description

0 light_id 1 Number Light identification Number

1 channel id 1 Number Channel identification Number
2 color 4 Number Channel color code

Table 10.112: Lights Set Color Request

Offset Field Size Value Description

0 light_id 1 Number Light identification Number

1 channel_id 1 Number Channel identification Number
2 fade_in 2 Number Fade in level

4 fade_out 2 Number Fade out level

Table 10.113: Lights Set Fade Request

Greybus Lights Set Color Request
The Greybus Lights Set Color request payload contains two 1-byte values that represents light_id, channel_id

and one 4-byte value which represents a color code in any color space for the light device channel, as defined
in table 10.112.

Greybus Lights Set Color Response

The Greybus Lights Set Color response message has no payload.

Greybus Lights Set Fade Operation

The Greybus Lights Set Fade operation allows the requester to enable and set the parameters for fade effect
of a specific Channel.

Greybus Lights Set Fade Request
The Greybus Lights Set Fade request payload contains a two 1-byte values that represent the light_id and

channel_id, more two 2-byte values that represents a level of the fade in and out effect during brightness
transitions by the light device channel being controlled, as defined in table 10.113.

Greybus Lights Set Fade Response

The Greybus Lights Set Fade response message has no payload.

Greybus Lights Event Operation

The Greybus Lights Event operation signals to the recipient that a change in the device setup have occurred.
This event shall be discarded by the recipient until a valid light controller configuration is known.

This operation is unidirectional and does not have a correspondent response.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 198

Offset Field Size Value Description

0 light_id 1 Number Light identification Number
1 event 1 Bit Mask Greybus Lights Fvent Bit Masks

Table 10.114: Lights Event Request

Symbol Brief Description Mask Value

GB_LIGHTS_LIGHT_CONFIG Configuration Changed 0x01
(All other values reserved) 0x02..0x80

Table 10.115: Lights Protocol Event Bit Mask

Greybus Lights Event Request

Table 10.114 defines the Greybus Lights Event request. The request payload supplies two 1-byte fields that
represent the light_id and event bit mask.

Greybus Lights Event Bit Masks

Table 10.115 defines the bit masks which specify the set of events that occurred in the sending controller.

Greybus Lights Set Flash Intensity Operation

The Greybus Lights Set Flash Intensity operation allows the requester to set current Intensity level in
microamperes of a Channel to the specified value.

Greybus Lights Set Flash Intensity Request
The Greybus Lights Set Flash Intensity request payload contains two 1-byte values that represent the light_id

and channel_id, and 4-byte value that represents the current intensity in microamperes. The value shall be
set between the minimum and maximum values got from flash configuration operation. 10.116.

Greybus Lights Set Flash Intensity Response

The Greybus Lights Set Flash Intensity response message has no payload.

Greybus Lights Set Flash Strobe Operation

The Greybus Lights Set Flash Strobe operation allows the requester to enable or disable the strobe associated
with a Channel.

Offset Field Size Value Description

0 light_id 1 Number Light identification Number

1 channel id 1 Number Channel identification Number

2 intensity _uA 4 Number Current Intensity in microamperes

Table 10.116: Lights Set Flash Intensity Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 199

Offset Field Size Value Description

0 light_id 1 Number Light identification Number

1 channel id 1 Number Channel identification Number
2 state 1 Number Strobe state to be set

Table 10.117: Lights Set Flash Strobe Request

Offset Field Size Value Description

0 light_id 1 Number Light identification Number

1 channel_id 1 Number Channel identification Number
2 timeout_us 4 Number Timeout Value in microseconds

Table 10.118: Lights Set Flash Timeout Request

Greybus Lights Set Flash Strobe Request
The Greybus Lights Set Flash Strobe request payload contains three 1-byte values that represents light_id,

channel id and the strobe state to be set. If state is 0 means disable, 1 means enable. Any other value shall
be considered invalid. 10.117.

Greybus Lights Set Flash Strobe Response

The Greybus Lights Set Flash Strobe response message has no payload.

Greybus Lights Set Flash Timeout Operation

The Greybus Lights Set Flash Timeout operation allows the requester to set flash timeout in microseconds
of a Channel to the specified value.

Greybus Lights Set Flash Timeout Request
The Greybus Lights Set Flash Timeout request payload contains two 1-byte values that represent the light_id

and channel id, and 4-byte value that represents the flash timeout in microseconds. The value shall be set
between the minimum and maximum values got from flash configuration operation. 10.118.

Greybus Lights Set Flash Timeout Response

The Greybus Lights Set Flash Timeout response message has no payload.

Greybus Lights Get Flash Fault Operation

The Greybus Lights Get Flash Fault operation allows the requester to get a detailed information of the
status and fault reasons of the flash type controller.

Greybus Lights Get Flash Fault Request

The Greybus Lights Get Flash Fault request payload contains two 1-byte values that represent the light_id
and channel_id. 10.119.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

200

Offset Field Size Value Description
0 light_id 1 Number Light identification Number
1 channel id 1 Number Channel identification Number
Table 10.119: Lights Get Flash Fault Request
Offset Field Size Value Description
0 fault 4 Bit Mask Greybus Lights Flash Foult Bit Masks

Table 10.120: Lights Get Flash Fault Response

Greybus Lights Get Flash Fault Response

The Greybus Lights Get Flash Fault response message payload contains a 4-byte bit mask with the current

fault status of the flash controller, as defined in table 10.120

Greybus Lights Flash Fault Bit Masks

Table 10.121 defines the bit masks which specify the fault status of the flash controller.

Log Protocol

This section defines the Operations used on a Connection implementing the Greybus Log Protocol. This
Protocol allows an Interface to send human-readable debug log messages to the AP. These messages are

typically meant to be displayed by the AP’s system logger (e.g. dmesg).
The Operations in the Greybus Log Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int send log(ulé len, char *log);
Log message from an Interface to the AP asynchronously

Symbol Brief Description Mask Value
GB_LIGHTS_FLASH FAULT_OVER_VOLTAGE Over Voltage 0x00000001
GB_LIGHTS_FLASH FAULT_TIMEOUT Timeout 0x00000002
GB_LIGHTS_FLASH_FAULT_OVER_.TEMPERATURE Over Temperature 0x00000004
GB_LIGHTS_FLASH FAULT_SHORT_CIRCUIT Short Circuit 0x00000008
GB_LIGHTS_FLASH FAULT_OVER_.CURRENT Over Current 0x00000010
GB_LIGHTS_FLASH_FAULT_INDICATOR Indicator Fault 0x00000020
GB_LIGHTS_FLASH FAULT_UNDER_VOLTAGE Under Voltage 0x00000040
GB_LIGHTS_FLASH FAULT_INPUT_VOLTAGE Input Voltage 0x00000080
GB_LIGHTS_FLASH_FAULT_.LED_OVER_-TEMPERATURE LED Over Temperature 0x00000100

(All other values reserved)

0x00000200..0x80000000

Table 10.121: Lights Protocol Flash Fault Bit Mask

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 201

Log Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80

Reserved 0x01 0x81

Send Log 0x02 0x82

(all other values reserved) 0x03..0x7e 0x83..0xfe
Invalid OxT7f Oxff

Table 10.122: Log Operation Types

Offset Field Size Value Description

0 length 2 Number Length in bytes of the log message
2 log X UTF-8 Content of the log message

Table 10.123: Log Protocol Send Log Request

Greybus Log Message Types

Table 10.122 describes the Greybus Log Operation types and their values. A message type consists of an
Operation type combined with a flag (0x80) indicating whether the Operation is a Request or a Response.

Greybus Log CPort Shutdown Operation

The Greybus Log CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the Log Protocol.

Greybus Log Send Log Operation

The Greybus Log Send Log Operation sends a log message from the Interface to the AP in an asynchronous
way. A log message is described by a null-terminated sequence of UTF-8 characters and its associated length.

Greybus Log Send Log Request

Table 10.123 defines the Greybus Log Send Log Request. The Request supplies the size of the log message
that is sent by the Interface and the log message itself.

Greybus Log Send Log Response

The Greybus Log Send Log Response message has no payload.

Loopback Protocol

This section defines the operations used on a connection implementing the Greybus loopback Protocol. This
Protocol is used for testing a Greybus device and the connection to the device, by sending and receiving
data in a “loop”.

The operations in the Greybus loopback Protocol are:

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 202

Loopback Operation Type Request Value Response Value

CPort Shutdown 0x00 0x80
Reserved 0x01 0x81
Ping 0x02 0x82
Transfer 0x03 0x83
Sink 0x04 0x84
(all other values reserved) 0x05..0x7e 0x85..0xfe
Invalid 0x7f Oxff

Table 10.124: Loopback Operation Types

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int ping(void);
Sends a “ping” message to the device, from the host, that needs to be acknowledged by the device.
By measuring how long this message takes to succeed, an idea of the speed of the connection can be
made.

int transfer(u32 len, char *send, char *receive);
Sends a stream of bytes to the device and receives them back from the device.

int sink(u32 len, char *send);
Sends a stream of bytes to the device that needs to be acknowledged by the device. No data are sent
back from the device.

Greybus Loopback Message Types

Table 10.124 describes the Greybus loopback operation types and their values. A message type consists of
an operation type combined with a flag (0x80) indicating whether the operation is a request or a response.

Greybus Loopback CPort Shutdown Operation

The Greybus Loopback CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Op-
eration for the Loopback Protocol.

Greybus Loopback Ping Operation

The Greybus ping operation is a simple message that has no response. It is used to time how long a single
message takes to be sent and acknowledged from the receiver.

Greybus Loopback Ping Request

The Greybus ping request message has no payload.

Greybus Loopback Ping Response

The Greybus ping response message has no payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 203

Offset Field Size Value Description

0 len 4 Number length in bytes of the data field
4 reserved0 4 Number Not used - same size as response
8 reservedl 4 Number Not used - same size as response
12 data X Data array of data bytes

Table 10.125: Loopback Protocol Transfer Request

Offset Field Size Value Description

0 len 4 Number length in bytes of the data field

4 reservedQ 4 Number reserved for use by the implementation
8 reservedl 4 Number reserved for use by the implementation
12 data X Data array of data bytes

Table 10.126: Loopback Protocol Transfer Response

Greybus Loopback Transfer Operation
The Greybus Loopback transfer operation sends data and then the same data is returned. This is used to

determine the time required to transfer different size messages. To facilitate analysis, the messages used for
both the Loopback Transfer Operation request and response message have identical formats.

Greybus Loopback Transfer Request

Table 10.125 defines the Greybus Loopback Transfer request. The request supplies size of the data that is
sent to the device, and the data itself.

Greybus Loopback Transfer Response

Table 10.126 defines the Greybus Loopback Transfer response. The response contains the same data that
was sent in the request.

Greybus Loopback Sink Operation

The Greybus Loopback sink operation sends data to the device. No data is returned back.

Greybus Loopback Sink Request

The Greybus sink request message is identical to the Greybus transfer request message.

Greybus Loopback Sink Response

The Greybus sink response message has no payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 204

Power Supply Operation Type Request Value Response Value

CPort Shutdown 0x00 0x80
Reserved 0x01 0x81
Get Power Supplies 0x02 0x82
Get Description 0x03 0x83
Get Property Descriptors 0x04 0x84
Get Property 0x05 0x85
Set Property 0x06 0x86
Event 0x07 N/A
(all other values reserved) 0x08..0x7e 0x88..0xfe
Invalid 0x7f Oxff

Table 10.127: Power Supply Operation Types

Power Supply Protocol

This section defines the operations used on a connection implementing the Greybus Power Supply Protocol.
This Protocol allows to manage a power supply controller present on a Module. The Protocol consists of
few basic operations, whose request and response message formats are defined here.

Conceptually, the operations in the Greybus Power Supply Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int get_power_supplies(u8 *psy_count);
Returns a value indicating the number of devices that this power supply adapter controls.

int get_description(u8 psy.-id, struct gb_power_supply.description *description);
Returns set of values related to a specific power supply controller defined by psy-id in the power supply
adapter. The return structure elements shall map the fields of Greybus Power Supply Get Description
Response

int get_property._descriptors(u8 psy-id, u8 *properties_count, struct gb_power_supply_property_desc *props.
Returns the number of property descriptors and set of descriptors related to a specific power supply
defined by psy.id in the power supply adapter. The property descriptor shall map to the fields of
Greybus Power Supply Property Descriptor. The number of properties can be zero.

int get_property(u8 psy_id, u8 property, u32 *prop._val);
Returns the current value of a property in a specific psy-id in the power supply adapter.

int set_property(u8 psy-id, u8 property, u32 prop.-val);
It sets the value of a given property in a specified psy_id, if the property is not described in is descriptor
as writable, this operation shall be discarded.

int event(u8 *type);
Input event sent from the device to host asynchronously.

Greybus Power Supply Message Types

Table 10.127 describes the Greybus power supply operation types and their values. A message type consists
of an operation type combined with a flag (0x80) indicating whether the operation is a request or a response.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 205

Offset Field Size Value Description

0 psy-_count 1 Number Number of Power Supplies controlled

Table 10.128: Power Supply Get Power Supplies Response

Offset Field Size Value Description

0 psy-id 1 Number Power Supply identification Number

Table 10.129: Power Supply Get Description Request

Greybus Power Supply CPort Shutdown Operation

The Greybus Power Supply CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown
Operation for the Power Supply Protocol.

Greybus Power Supply Get Power Supplies Operation
The Greybus power supply get power supplies operation allows requester to determine the number of power

supply devices controlled by the power supply adapter. Power Supply Controllers shall be numbered sequen-
tially starting at zero and ending at psy_count less one.

Greybus Power Supply Get Power Supplies Request

The Greybus power supply get power supplies request message has no payload.

Greybus Power Supply Get Power Supplies Response

The Greybus power supply get power supplies response contains a 1-byte value that represents the number
of power supply being controlled as defined in Table 10.128.

Greybus Power Supply Get Description Operation

The Greybus power supply get description operation allows requester to determine a set of configuration
parameters from a specific power supply controller.

Greybus Power Supply Get Description Request

Table 10.129 describes the Greybus Power Supply Get Description request. The request supplies only the
psy-id which is an unique identifier between 0 and power supplies_count less one.

Greybus Power Supply Get Description Response

Table 10.130 describes the Greybus Power Supply Get Description response. The response payload contains
a set of parameters representing the configuration of a power supply.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 206

Offset Field Size Value Description

0 manufacturer 32 UTF-8 Manufacturer name

32 model 32 UTF-8 Model name

64 serial_number 32 UTF-8 Serial Number

96 type 2 Number Greybus Power Supply Type
98 properties_count 1 Number Number of properties

Table 10.130: Power Supply Get Description Response

Power Supply Type Value Description

GB_POWER_SUPPLY_UNKNOWN_TYPE 0x0000 Unknown Type
GB_POWER_SUPPLY_BATTERY_TYPE 0x0001 Battery Type

GB_POWER _SUPPLY_UPS_TYPE 0x0002 Uninterruptible Power Supply Type
GB_POWER_SUPPLY_MAINS_TYPE 0x0003 AC Power Supply Type
GB_POWER_SUPPLY_USB_TYPE 0x0004 USB Standard Downstream Port
GB_POWER_SUPPLY_USB_DCP_TYPE 0x0005 USB Dedicated Charging Port
GB_POWER_SUPPLY_USB_CDP_TYPE 0x0006 USB Charging Downstream Port
GB_POWER_SUPPLY_USB_ACA_TYPE 0x0007 USB Accessory Charger Adapters

GB_POWER_SUPPLY_USB_HVDCP_TYPE 0x0008 USB High Voltage DCP
GB_POWER_SUPPLY_USB_TYPE_.C_.TYPE 0x0009 USB Type C Port
GB_POWER_SUPPLY_USB_PD_TYPE 0x000A USB Power Delivery Port
GB_POWER_SUPPLY_USB_PD DRP_.TYPE 0x000B USB Power Delivery Dual Role Port
GB_POWER_SUPPLY_WIRELESS_TYPE 0x000C Wireless Power Supply Type

Table 10.131: Power Supply Type

Greybus Power Supply Type

Table 10.131 describes the defined power supply types defined for Greybus power supply adapters.

Greybus Power Supply Get Property Descriptors Operation

The Greybus power supply get property descriptors operation allows requester to determine the set of prop-
erties supported by the power supply controller and if the property support the :ref:Set Property Operation.

Greybus Power Supply Get Property Descriptors Request

Table 10.132 describes the Greybus Power Supply Get Property Descriptors request. The request supplies
only the psy_id which is an unique identifier between 0 and power supplies_count less one.

Greybus Power Supply Get Property Descriptors Response

Table 10.133 describes the Greybus Power Supply Get Property Descriptors response. The response payload
contains the number and the properties descriptors in this response.

Offset Field Size Value Description

0 psy.id 1 Number Power Supply identification Number

Table 10.132: Power Supply Get Property Descriptor Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 207

Offset Field Size Value Description
0 properties_count 1 Number Number of properties descriptors
1 props[N] (2*N) Structure N Property Descriptors Greybus Power Supply Property Descriptor

Table 10.133: Power Supply Get Property Descriptors Response

Offset Field Size Value Description
0 property 1 Number Greybus Power Supply Property Type
1 is_writable 1 Number Writable Property

Table 10.134: Power Supply Property Descriptor

Greybus Power Supply Property Descriptor

Table 10.134 describes a property descriptor which contains the descriptor type and writable indication.

Greybus Power Supply Property Type

Table 10.135 describes the defined power supply properties for the Greybus power supply adapters. All
voltages, currents, charges, energies, time and temperatures in micro-volt(xV), micro-ampere(uA), micro-
ampere-hour(uAh), micro-watt-hour(wWh), seconds and tenths of degrees Celsius unless otherwise stated.

In Table 10.135 the mandatory column indicates power supply properties that shall be supported by the
Greybus Power Supply protocol. If a mandatory property is missing or advertises invalid mode the Greybus
Power Supply Protocol connection shall be terminated.

Following notation is used to show these mandatory properties and their corresponding modes for each
Greybus Power Supply type.

e [Mode][Type], where:
— Mode can be: R (read) / W (write)
— Type, based on values in Greybus Power Supply Type, can be:
* B (Battery - GB.LPOWER_SUPPLY _BATTERY_TYPE)

* C (Charger - From GB_POWER_SUPPLY_USB_TYPE to
GB_POWER_SUPPLY_WIRELESS_TYPE types from the Greybus Power Supply Type)

% O (Others - all other types)

Greybus Power Supply Property Status

Table 10.136 describes the defined power supply status values available for Greybus power supply adapters.

Greybus Power Supply Property Charge

Table 10.137 describes the defined power supply charge types available for Greybus power supply adapters.

Greybus Power Supply Property Health

Table 10.138 describes the defined power supply health values available for Greybus power supply adapters.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

208

Power Supply Property Value Mandatory Description Battery
GB_POWER_SUPPLY_PROP_STATUS 0x00 RB-RC-RO Greybus Power Supply Property Status
GB_POWER_SUPPLY_PROP_CHARGE_TYPE 0x01 RC Greybus Power Supply Property Charge
GB_POWER_SUPPLY PROP_HEALTH 0x02 RB-RC-RO Greybus Power Supply Property Health
GB_POWER_SUPPLY_PROP_PRESENT 0x03 RB-RC-RO Presence indicator (1 is present, 0 is not present).
GB_POWER_SUPPLY_PROP_ONLINE 0x04 RC-RO Online indicator (1 is online, 0 is not online)
GB_POWER-SUPPLY_PROP_AUTHENTIC 0x05 Authentic indicator (1 is authentic, 0 is not authentic)
GB_POWER_SUPPLY _PROP_TECHNOLOGY 0x06 RB Greybus Power Supply Property Technology
GB_POWER_SUPPLY PROP_CYCLE_COUNT 0x07 A complete charge cycle counter
GB_POWER_SUPPLY _PROP_VOLTAGE_MAX 0x08 RC,WC Value from measure and retain maximum Voltage
GB_POWER_SUPPLY_PROP_VOLTAGE_MIN 0x09 Value from measure and retain minimum Voltage
GB_POWER_SUPPLY _PROP_VOLTAGE_MAX_DESIGN 0x0A Maximum value for Voltage by design
GB_POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN 0x0B Minimum value for Voltage by design
GB_POWER_SUPPLY_PROP_VOLTAGE_NOW 0x0C RB Instantaneous Voltage value
GB_POWER_SUPPLY_PROP_VOLTAGE_AVG 0x0D Average Voltage value
GB_POWER_SUPPLY_PROP_VOLTAGE_OCV 0x0E Open Circuit Voltage
GB_POWER_SUPPLY_PROP_VOLTAGE_BOOT 0x0F Voltage during boot

GB_POWER_SUPPLY _PROP_CURRENT_-MAX 0x10 RC,WC Maximum Current Value
GB_POWER-SUPPLY_PROP_CURRENT_NOW 0x11 RB Instantaneous Current Value
GB_POWER_SUPPLY PROP_CURRENT_AVG 0x12 Average Current value

GB_POWER_SUPPLY PROP_CURRENT_BOOT 0x13 Current measured at boot
GB_POWER_SUPPLY PROP_POWER_NOW 0x14 Instantaneous Power consumption
GB_POWER_SUPPLY_PROP_POWER_AVG 0x15 Average Power consumption
GB_POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN 0x16 RB Threshold for full charge by design
GB_POWER_SUPPLY_PROP_CHARGE_EMPTY _DESIGN 0x17 RB Threshold for empty charge value by design
GB_POWER_SUPPLY_PROP_CHARGE_FULL 0x18 RB Value from measure and retain maximum charge
GB_POWER_SUPPLY_PROP_CHARGE_EMPTY 0x19 Value from measure and retain minimum charge
GB_POWER_SUPPLY PROP_CHARGE_NOW 0x1A RB Instantaneous charge value
GB_POWER_SUPPLY_PROP_CHARGE_AVG 0x1B Average charge value
GB_POWER_SUPPLY_PROP_.CHARGE_COUNTER 0x1C Charge counter
GB_POWER_SUPPLY_PROP_CONSTANT_-CHARGE_CURRENT 0x1D Charge Current programmed by charger
GB_POWER_SUPPLY PROP_CONSTANT_CHARGE_CURRENT_MAX O0x1E Maximum charge current supported
GB_POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE 0x1F RC,WC Charge Voltage programmed by charger
GB_POWER_SUPPLY _PROP_CONSTANT_CHARGE_VOLTAGE_ MAX 0x20 Maximum charge voltage supported
GB_POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT 0x21 Current charge control limit
GB_POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX 0x22 Maximum charge control limit
GB_POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT 0x23 RC,WC Input current limit programmed by charger
GB_POWER_SUPPLY_PROP_ENERGY _FULL_DESIGN 0x24 Threshold for full energy by design
GB_POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN 0x25 Threshold for empty energy by design
GB_POWER_SUPPLY_PROP_ENERGY_FULL 0x26 Value from measure and retain maximum energy
GB_POWER-SUPPLY_PROP_ENERGY_EMPTY 0x27 Value from measure and retain minimum energy
GB_POWER_SUPPLY_PROP_ENERGY_NOW 0x28 Instantaneous energy value
GB_POWER_SUPPLY_PROP_ENERGY_AVG 0x29 Average energy value

GB_POWER_SUPPLY _PROP_CAPACITY 0x2A RB Capacity in percents

GB_POWER_SUPPLY PROP_CAPACITY_ALERT_MIN 0x2B Minimum capacity alert value in percents
GB_POWER_SUPPLY PROP_CAPACITY_ALERT_MAX 0x2C Maximum capacity alert value in percents
GB_POWER_SUPPLY_PROP_CAPACITY_LEVEL 0x2D RB Greybus Power Supply Property Capacity
GB_POWER_SUPPLY _PROP_TEMP 0x2E RB-RC Temperature
GB_POWER_SUPPLY_PROP_TEMP_MAX 0x2F RB Maximum operable temperature
GB_POWER_SUPPLY_PROP_TEMP_MIN 0x30 RB Minimum operable temperature
GB_POWER_SUPPLY_PROP_TEMP_ALERT_MIN 0x31 Minimum temperature alert
GB_POWER_SUPPLY PROP_.TEMP_ALERT_MAX 0x32 Maximum temperature alert
GB_POWER_SUPPLY _PROP_.TEMP_AMBIENT 0x33 Ambient temperature
GB_POWER_SUPPLY_PROP_.TEMP_AMBIENT_ALERT_-MIN 0x34 Minimum ambient temperature alert
GB_POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_-MAX 0x35 Maximum ambient temperature alert
GB_POWER_SUPPLY PROP_TIME_TO_EMPTY NOW 0x36 Instantaneous seconds left to be considered empty
GB_POWER_SUPPLY _PROP_TIME_TO_EMPTY _AVG 0x37 Average seconds left to be considered empty
GB_POWER_SUPPLY _PROP_TIME_TO_FULL_NOW 0x38 Instantaneous seconds left to be considered full
GB_POWER_SUPPLY_PROP_TIME_TO_FULL_AVG 0x39 Average seconds left to be considered full
GB_POWER_SUPPLY_PROP_TYPE 0x3A RB-RC-RO Greybus Power Supply Type
GB_POWER_SUPPLY_PROP_SCOPE 0x3B Greybus Power Supply Property Scope
GB_POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT 0x3C RC,WC Charge Termination current
GB_POWER_SUPPLY PROP_CALIBRATE 0x3D Calibration status
GB_POWER_SUPPLY_PROP_USB_HC 0x3E High Current USB
GB_POWER_SUPPLY_PROP_USB_.OTG 0x3F RC,WC OTG boost property
GB_POWER_SUPPLY_PROP_CHARGING_ENABLED 0x40 RC,WC Control charging status

Table 10.135: Power Supply Property Type

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

209

Power Supply Status Value
GB_POWER_SUPPLY_STATUS_UNKNOWN 0x0000
GB_POWER_SUPPLY_STATUS_CHARGING 0x0001

GB_POWER_SUPPLY _STATUS_DISCHARGING 0x0002
GB_POWER_SUPPLY_STATUS_.NOT_CHARGING 0x0003
GB_POWER_SUPPLY _STATUS_FULL 0x0004

Table 10.136: Power Supply Property Status

Power Supply Charge Value

GB_-POWER_SUPPLY_CHARGE_TYPE_NONE 0x0001
GB_POWER_SUPPLY_CHARGE_TYPE_TRICKLE 0x0002
GB_POWER_SUPPLY_CHARGE_TYPE_FAST 0x0003

Table 10.137: Power Supply Property Charge

Power Supply Health Value

GB_POWER_SUPPLY_HEALTH_UNKNOWN 0x0000
GB_POWER_SUPPLY_HEALTH_GOOD 0x0001
GB_POWER_SUPPLY_HEALTH.OVERHEAT 0x0002
GB_POWER_SUPPLY_ HEALTH_DEAD 0x0003
GB_POWER_SUPPLY HEALTH_OVERVOLTAGE 0x0004
GB_POWER_SUPPLY_HEALTH_UNSPEC_FAILURE 0x0005
GB_POWER_SUPPLY_HEALTH_COLD 0x0006
GB_POWER_SUPPLY_HEALTH_-WATCHDOG_TIMER_EXPIRE 0x0007
GB_POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE 0x0008

Table 10.138: Power Supply Property Health

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 210

Power Supply Technology Value

GB_POWER_SUPPLY_TECH_UNKNOWN 0x0000
GB_POWER_SUPPLY_TECH_NiMH 0x0001
GB_POWER_SUPPLY_TECH_LION 0x0002
GB_POWER _SUPPLY_TECH_LIPO 0x0003
GB_POWER_SUPPLY_TECH_LiFe 0x0004
GB_POWER_SUPPLY_TECH_NiCd 0x0005
GB_POWER_SUPPLY_TECH_LiMn 0x0006

Table 10.139: Power Supply Property Technology

Power Supply Capacity Value

GB_POWER_SUPPLY_CAPACITY_LEVEL_.UNKNOWN (0x0000
GB_POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL 0x0001

GB_POWER_SUPPLY_CAPACITY_LEVEL_LOW 0x0002
GB_POWER_SUPPLY_CAPACITY_LEVEL_ NORMAL 0x0003
GB_POWER_SUPPLY_CAPACITY_LEVEL_HIGH 0x0004
GB_POWER_SUPPLY_CAPACITY_LEVEL_FULL 0x0005

Table 10.140: Power Supply Property Capacity

Greybus Power Supply Property Technology

Table 10.139 describes the defined power supply technologies available for Greybus power supply adapters.

Greybus Power Supply Property Capacity

Table 10.140 describes the defined power supply capacity levels available for battery adapters.

Greybus Power Supply Property Scope

Table 10.141 describes the defined power supply scopes available for Greybus power supply adapters.

Greybus Power Supply Get Property Operation

The Greybus power supply get property operation allows requester to determine the current value of a
property supported by the power supply controller.

Power Supply Scope Value

GB_POWER_SUPPLY_SCOPE_UNKNOWN 0x0000
GB_POWER_SUPPLY_SCOPE_SYSTEM 0x0001
GB_POWER_SUPPLY_SCOPE_DEVICE 0x0002

Table 10.141: Power Supply Property Scope

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 211

Offset Field Size Value Description
0 psy-id 1 Number Power Supply identification Number
1 property 1 Number Greybus Power Supply Property Type

Table 10.142: Power Supply Get Property Request

Offset Field Size Value Description

0 prop-val 4 Number Property value

Table 10.143: Power Supply Get Property Response

Greybus Power Supply Get Property Request

Table 10.142 describes the Greybus Power Supply Get Property request. The request supplies only the
psy-id which is an unique identifier between 0 and psy_count less one and the property to fetch the value.

Greybus Power Supply Get Property Response

Table 10.143 describes the Greybus Power Supply Get Property response. The response returns the current
value of the property issued in the request.

Greybus Power Supply Set Property Operation

The Greybus power supply set property operation allows requester to change the current value of a property
supported by the power supply controller. This operation shall fail if the property is not set as writable.

Greybus Power Supply Set Property Request
Table 10.144 describes the Greybus Power Supply Set Property request. The request supplies the psy_id

which is an unique identifier between 0 and power supplies_count less one, the property to alter and the new
value.

Greybus Power Supply Set Property Response

The Greybus power supply Set Property response message has no payload.

Greybus Power Supply Event Request

Table 10.145 defines the Greybus Power Supply Event request. The request payload supplies two 1-byte
fields that represent the psy_id and event bit mask.

Offset Field Size Value Description

0 psy-id 1 Number Power Supply identification Number
1 property 1 Number Greybus Power Supply Property Type
2 prop_val 4 Number Property value

Table 10.144: Power Supply Set Property Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 212

Offset Field Size Value Description

0 psy-id 1 Number Power Supply identification Number
1 event 1 Bit Mask Greybus Power Supply Event Bit Masks

Table 10.145: Power Supply Event Request

Symbol Brief Description Mask Value

GB_POWER_SUPPLY_UPDATE Properties Update Event 0x01
(All other values reserved) 0x02..0x80

Table 10.146: Power Supply Protocol Event Bit Mask

Greybus Power Supply Event Bit Masks

Table 10.146 defines the bit masks which specify the set of events that occurred in the sending controller.

Raw Protocol

This section defines the operations used on a connection implementing the Greybus Raw Protocol. This
Protocol is used for streaming “raw” data from userspace directly to or from the device. The data contained
by the protocol is not interpreted by the kernel, but requires a userspace program to handle it. It can almost
be considered a “vendor specific” protocol in that the format of the data is unspecified, and will vary by
device.

The operations in the Greybus Raw Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int send(u32 len, char *data);
Sends a stream of data from the AP to the device.

Greybus Raw Message Types

Table 10.147 describes the Greybus Raw operation types and their values. A message type consists of an
operation type combined with a flag (0x80) indicating whether the operation is a request or a response.

Raw Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80

Reserved 0x01 0x81

Send 0x02 0x82

(all other values reserved) 0x04..0x7e 0x84..0xfe
Invalid Ox7f Oxff

Table 10.147: Raw Operation Types

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 213

Offset Field Size Value Description

0 len 4 Number length in bytes of the data field
4 data len Data data to be sent

Table 10.148: Raw Send Protocol Transfer Request

Greybus Raw CPort Shutdown Operation

The Greybus Raw CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the Raw Protocol.

Greybus Raw Send Operation

The Greybus Raw send operation sends data from the requester to the respondent.

Greybus Raw Send Request

Table 10.148 defines the Greybus Raw Send request. The request supplies size of the data that is sent to
the device, and the data itself.

Greybus Raw Send Response

The Greybus Raw send response message has no payload.

Vibrator Protocol

This section defines the operations used on a connection implementing the Greybus vibrator Protocol. This
Protocol allows an AP Module to manage a vibrator device present on a Module. The Protocol is very
simple, and maps almost directly to the Android HAL vibrator interface.

The operations in the Greybus vibrator Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int vibrator_on(void);
Turns on the vibrator.

int vibrator_off (void);
Turns off the vibrator immediately.

Greybus Vibrator Message Types

Table 10.149 describes the Greybus vibrator operation types and their values. A message type consists of
an operation type combined with a flag (0x80) indicating whether the operation is a request or a response.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 214

Vibrator Operation Type Request Value Response Value

CPort Shutdown 0x00 0x80
Reserved 0x01 0x81
Vibrator On 0x02 0x82
Vibrator Off 0x03 0x83
(all other values reserved) 0x04..0x7e 0x84..0xfe
Invalid 0x7f Oxff

Table 10.149: Vibrator Operation Types

Greybus Vibrator CPort Shutdown Operation

The Greybus Vibrator CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Op-
eration for the Vibrator Protocol.

Greybus Vibrator On Operation

The Greybus vibrator on operation allows the AP Module to request the vibrator be enabled.

Greybus Vibrator On Request

The Greybus vibrator on request message has no payload.

Greybus Vibrator On Response

The Greybus vibrator on response message has no payload.

Greybus Vibrator Off Operation

The Greybus Vibrator off operation allows the AP Module to request the vibrator be turned off as soon as
possible.

Greybus Vibrator Off Request

The Greybus vibrator off request message has no payload.

Greybus Vibrator Off Response

The Greybus vibrator off response message has no payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 215

Chapter 11

Bridged PHY Connection Protocols

This section defines a group of Protocols whose purpose is to support communication with Modules on the
Greybus network which do not comply with an existing device class Protocol, and which include integrated
circuits using alternative physical interfaces to UniPro. Modules which implement any of the Protocols
defined in this section are said to be non-device class conformant.

USB Protocol

We support bulk, control, and interrupt transfers, but not isochronous at this point in time.

Details TBD.

GPIO Protocol

A connection using the GPIO Protocol on a UniPro network is used to manage a simple GPIO controller.
Such a GPIO controller implements from one to 256 GPIO lines. Each of the operations defined below
specifies the line to which the operation applies.

Conceptually, the GPIO Protocol operations are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int line_count(u8 *count);
Returns one less than the number of lines managed by the Greybus GPIO controller. This means the
minimum number of lines is 1 and the maximum is 256.

int activate(u8 which);
Notifies the GPIO controller that one of its lines has been assigned for use.

int deactivate(u8 which);
Notifies the GPIO controller that a previously activated line has been unassigned and can be deacti-
vated.

int get_direction(u8 which, u8 *direction);
Requests the GPIO controller return a line’s configured direction (0 for output, 1 for input).

int direction_input(u8 which);
Requests the GPIO controller configure a line for input.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 216

GPIO Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80
Reserved 0x01 0x81
Line Count 0x02 0x82
Activate 0x03 0x83
Deactivate 0x04 0x84

Get Direction 0x05 0x85
Direction Input 0x06 0x86
Direction Output 0x07 0x87

Get 0x08 0x88

Set 0x09 0x89

Set Debounce 0x0a 0x8a
TRQ Type 0x0b 0x8b
TRQ Mask 0x0c 0x8c
TRQ Unmask 0x0d 0x8d
IRQ Event 0x0e N/A

(all other values reserved) 0x0f..0x7e 0x8f..0xfe
Invalid 0x7f Oxff

Table 11.1: GPIO Operation Types

int direction_ output(u8 which, u8 value);
Requests the GPIO controller configure a line for output, and sets its initial output value (0 for low,
1 for high).

int get_value(u8 which, u8 *value);
Requests the GPIO controller return the current value sensed on a line (0 for low, 1 for high).

int set_value(u8 which, u8 value);
Requests the GPIO controller set the value (0 for low, 1 for high) for a line configured for output.

int set_debounce(u8 which, ul6 usec);
Requests the GPIO controller set the debounce period (in microseconds).

int irq_type(u8 which, u8 type);
Requests the GPIO controller set the IRQ trigger type (none, falling/rising edge, or low/high level).

int irq-mask(u8 which);
Requests the GPIO controller mask the specified gpio irq line.

int irq unmask(u8 which);
Requests the GPIO controller unmask the specified gpio irq line.

void irq_event(u8 which);
GPIO controller request to recipient signaling an event on the specified gpio irq line.

Greybus GPIO Protocol Operations

All operations sent to a GPIO controller are contained within a Greybus GPIO request message. Every
operation request results in a matching response from the GPIO controller, also taking the form of a GPIO
controller message. The request and response messages for each GPIO operation are defined below.

Table 11.1 defines the Greybus GPIO Protocol operation types and their values. Both the request type and
response type values are shown.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 217

Offset Field Size Value Description

0 count 1 Number Number of GPIO lines minus 1

Table 11.2: GPIO Protocol Line Count Response

Offset Field Size Value Description

0 which 1 Number Controller-relative GPIO line number

Table 11.3: GPIO Protocol Activate Request

Greybus GPIO CPort Shutdown Operation

The Greybus GPIO CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the GPIO Protocol.

Greybus GPIO Line Count Operation

The Greybus GPIO line count operation allows the requestor to determine how many GPIO lines are imple-
mented by the GPIO controller.

Greybus GPIO Line Count Request

The Greybus GPIO line count request message has no payload.

Greybus GPIO Line Count Response
Table 11.2 describes the Greybus GPIO line count response. The response contains a one-byte value defining
the number of lines managed by the controller, minus one. That is, a count value of zero represents a single

GPIO line, while a (maximal) count value of 255 represents 256 lines. GPIOs shall be numbered sequentially
starting at zero.

Greybus GPIO Activate Operation
The Greybus GPIO activate operation notifies the GPIO controller that one of its GPIO lines has been

allocated for use. This provides a chance to do initial setup for the line, such as enabling power and clock
signals.

Greybus GPIO Activate Request

Table 11.3 defines the Greybus GPIO activate request. The request supplies only the number of the line to
be activated.

Greybus GPIO Activate Response

The Greybus GPIO activate response message has no payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 218

Offset Field Size Value Description

0 which 1 Number Controller-relative GPIO line number

Table 11.4: GPIO Protocol Deactivate Request

Offset Field Size Value Description
0 which 1 Number Controller-relative GPIO line number

Table 11.5: GPIO Protocol Get Direction Request

Greybus GPIO Deactivate Operation

The Greybus GPIO deactivate operation notifies the GPIO controller that a previously activated line is no
longer in use and can be deactivated.

Greybus GPIO Deactivate Request

Table 11.4 defines the Greybus GPIO deactivate request. The request supplies only the number of the line
to be deactivated.

Greybus Deactivate Response

The Greybus GPIO deactivate response message has no payload.

Greybus GPIO Get Direction Operation

The Greybus GPIO get direction operation requests the GPIO controller respond with the direction of
transfer (in or out) for which a line is configured.

Greybus GPIO Get Direction Request

Table 11.5 defines the Greybus GPIO get direction request. The request supplies only the target line number.

Greybus GPIO Get Direction Response

Table 11.6 defines the Greybus GPIO get direction response. The response contains one byte indicating
whether the line in question is configured for input or output.

Offset Field Size Value Description

0 direction 1 Number Direction (0 for output, 1 for input)

Table 11.6: GPIO Protocol Get Direction Response

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 219

Offset Field Size Value Description

0 which 1 Number Controller-relative GPIO line number

Table 11.7: GPIO Protocol Direction Input Request

Offset Field Size Value Description

0 which 1 Number Controller-relative GPIO line number
1 value 1 Number Initial value (0 is low, 1 is high)

Table 11.8: GPIO Protocol Direction Output Request

Greybus GPIO Direction Input Operation

The Greybus GPIO direction input operation requests the GPIO controller to configure a line to be used for
input.

Greybus GPIO Direction Input Request

Table 11.7 defines the Greybus GPIO direction input request. The request supplies only the number of the
line.

Greybus GPIO Direction Input Response

The Greybus GPIO direction input response message has no payload.

Greybus GPIO Direction Output Operation

The Greybus GPIO direction output operation requests the GPIO controller to configure a line to be used
for output, and specifies its initial value.

Greybus GPIO Direction Output Request

Table 11.8 defines the Greybus GPIO direction output request. The request supplies the number of the line
and its initial value.

Greybus GPIO Direction Output Response

The Greybus GPIO direction output response message has no payload.

Greybus GPIO Get Operation

The Greybus GPIO get operation requests the GPIO controller respond with the current value (high or low)
on a line.

Greybus GPIO Get Request

Table 11.9 defines the Greybus GPIO get request. The request supplies only the target line number.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 220

Offset Field Size Value Description

0 which 1 Number Controller-relative GPIO line number

Table 11.9: GPIO Protocol Get Request

Offset Field Size Value Description
0 value 1 Number Value (0 is low, 1 is high)

Table 11.10: GPIO Protocol Get Response

Greybus GPIO Get Response

Table 11.10 defines the Greybus GPIO get response. The response contains one byte indicating the value on
the line in question.

Greybus GPIO Set Operation

The Greybus GPIO set operation requests the GPIO controller to set a line configured to be used for output
to have either a low or high value.

Greybus GPIO Set Request

Table 11.11 defines the Greybus GPIO set request. The request supplies the number of the line and the
value to be set.

Todo

Possibly make this a mask to allow multiple values to be set at once.

Greybus GPIO Set Response

The Greybus GPIO set response message has no payload.

Greybus GPIO Set Debounce Operation

The Greybus GPIO set debounce operation requests the GPIO controller to set the debounce delay configured
to be used for a line.

Offset Field Size Value Description

0 which 1 Number Controller-relative GPIO line number
1 value 1 Number Initial value (0 is low, 1 is high)

Table 11.11: GPIO Protocol Set Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 221

Offset Field Size Value Description

0 which 1 Number Controller-relative GPIO line number
1 usec 2 Number Debounce period (microseconds)

Table 11.12: GPIO Protocol Set Debounce Request

Offset Field Size Value Description

0 which 1 Number Controller-relative GPIO line number
1 type 1 Number Greybus GPIO IRQ Type Bits

Table 11.13: GPIO IRQ Type Request

Greybus GPIO Set Debounce Request

Table 11.12 defines the Greybus GPIO set debounce request. The request supplies the number of the line and
the time period (in microseconds) to be used for the line. If the period specified is 0, debounce is disabled.

Greybus GPIO Set Debounce Response

The Greybus GPIO set debounce response message has no payload.

Greybus GPIO IRQ Type Operation

The Greybus GPIO IRQ type operation requests the GPIO controller to set the interrupt trigger type to be
used for a line.

Greybus GPIO IRQ Type Request

Table 11.13 defines the Greybus GPIO IRQ type request. This request supplies the number of the line and
the type to be used for the line.

Greybus GPIO IRQ Type Bits

Table 11.14 describes the defined interrupt trigger type bit values defined for Greybus GPIO IRQ chips.
Only the listed trigger type values are valid.

Symbol Brief Description Value
IRQ-TYPE_NONE No trigger specified, uses default/previous setting 0x00
IRQ-TYPE_EDGE_RISING Rising edge triggered 0x01
IRQ-TYPE_EDGE_FALLING Falling edge triggered 0x02
IRQ_-TYPE_EDGE_BOTH Rising and falling edge triggered 0x03
IRQ-TYPE_LEVEL_HIGH Level triggered high 0x04
IRQ_TYPE_LEVEL_LOW Level triggered low 0x08
(All other values reserved) 0x10..0xff

Table 11.14: GPIO IRQ Type Bits

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 222

Offset Field Size Value Description

0 which 1 Number Controller-relative GPIO line number

Table 11.15: GPIO IRQ Mask Request

Offset Field Size Value Description

0 which 1 Number Controller-relative GPIO line number

Table 11.16: GPIO IRQ Unmask Request

Greybus GPIO IRQ Type Response

The Greybus GPIO IRQ type response message has no payload.

Greybus GPIO IRQ Mask Operation

The Greybus GPIO TRQ mask operation requests the GPIO controller to mask a GPIO IRQ line.

Greybus GPIO IRQ Mask Request

Table 11.15 defines the Greybus GPIO IRQ mask request. This request supplies the number of the line to
be masked.

Greybus GPIO IRQ Mask Response

The Greybus GPIO IRQ mask response message has no payload.

Greybus GPIO IRQ Unmask Operation

The Greybus GPIO IRQ unmask operation requests the GPIO controller to unmask a GPIO IRQ line.

Greybus GPIO IRQ Unmask Request

Table 11.16 defines the Greybus GPIO IRQ unmask request. This request supplies the number of the line
to be unmasked.

Greybus GPIO IRQ Unmask Response

The Greybus GPIO IRQ unmask response message has no payload.

Greybus GPIO IRQ Event Operation

The Greybus GPIO IRQ event operation signals to the recipient that a GPIO IRQ event has occurred on
the GPIO Controller.

The GPIO controller is responsible for masking the interrupt before sending the event.

Note that the GPIO IRQ event operation is unidirectional and has no response.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 223

Offset Field Size Value Description

0 which 1 Number Controller-relative GPIO line number

Table 11.17: GPIO IRQ Event Request

SPI Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80

Reserved 0x01 0x81

Master Config 0x02 0x82

Device Config 0x03 0x83

Transfer 0x04 0x84

(all other values reserved) 0x05..0x7e 0x85..0xfe
Invalid Ox7f Oxff

Table 11.18: SPI Protocol Operation Types

Greybus GPIO IRQ Event Request

Table 11.17 defines the Greybus GPIO IRQ Event request. This request supplies the number of the line
signaling an event.

SPI Protocol

This section defines the operations used on a connection implementing the Greybus SPI Protocol. This
Protocol allows for management of a SPI device. The Protocol consists of the operations defined in this
section.

Conceptually, the operations in the Greybus SPI Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int master_config(ul6 *mode, ulé *flags, u32 *bpw.mask, ul6 *num chipselect, u32 *min_speed_hz, u32 *max.
Returns a set of configuration parameters related to SPI master.

int device_config(ul6é cs, ul6 *mode, u8 *bpw, u32 *max_speed hz, u8 *device_type, u8 *name[32]);
Returns a set of configuration parameters related to SPI device in a chipselect.

int transfer(u8 chip_select, u8 mode, u8 count, struct gb_spi_transfer *transfers);
Performs a SPI transaction as one or more SPI transfers, defined in the supplied array.

A transfer is made up of an array of gb_spi_transfer descriptors, each of which specifies SPI master configura-
tions during transfers. For write requests, the data is sent following the array of messages; for read requests,
the data is returned in a response message from the SPI master.

Greybus SPI Message Types

Table 11.18 defines the Greybus SPI operation types and their values. A message type consists of an operation
type combined with a flag (0x80) indicating whether the operation is a request or a response.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 224

Offset Field Size Value Description
0 bpw_mask 4 Bit Mask :ref:’spi-bpw-mask*
4 min_speed_hz Number Lower limit for transfer speed

4
8 max_speed_hz 4 Number Higher limit for transfer speed

10 mode 2 Bit Mask Greybus SPI Protocol Mode Bit Masks

12 flags 2 Bit Mask Greybus SPI Protocol Flags Bit Masks

14 num_chipselect 1 Number Maximum chipselect supported by Master

Table 11.19: SPI Protocol Master Config Response

Symbol Brief Description Mask Value
GB_SPI.MODE_CPHA Clock phase (0: sample on first clock, 1: on second) 0x0001
GB_SPI.MODE_CPOL Clock polarity (0: clock low on idle, 1: high on idle) 0x0002
GB_SPI.MODE_CS_HIGH Chip select active high 0x0004
GB_SPI.MODE_LSB_FIRST Per-word bits-on-wire 0x0008
GB_SPI.MODE_3WIRE SI/S0 signals shared 0x0010
GB_SPI_ MODE_LOOP Loopback mode 0x0020
GB_SPI.MODE_NO_CS One dev/bus, no chip select 0x0040
GB_SPI.MODE_READY Slave pulls low to pause 0x0080
(All other mask values reserved) 0x0100..0x8000

Table 11.20: SPI Protocol Mode Bit Masks

Greybus SPI CPort Shutdown Operation

The Greybus SPI CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the SPI Protocol.

Greybus SPI Protocol Master Config Operation
The Greybus SPI Master Config operation allows the requestor to determine the details of the configuration

parameters by the SPI master. This operation can be executed at any time. All other operations should be
discarded until the successful execution of this one.

Greybus SPI Protocol Master Config Request

The Greybus SPI Master Config request message has no payload.

Greybus SPI Protocol Master Config Response

Table 11.19 defines the Greybus SPI Master Config response. The response contains a set of values repre-
senting the support, limits and default values of certain configurations.

Greybus SPI Protocol Mode Bit Masks

Table 11.20 defines the mode bit masks for Greybus SPI masters.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 225

Symbol Brief Description Mask Value
GB_SPI.FLAG _HALF DUPLEX Can’t do full duplex 0x0001
GB_SPI.FLAG_NO_RX Can’t do buffer read 0x0002
GB_SPI.FLAG_NO_TX Can’t do buffer write 0x0004

(All other flag values reserved) 0x0008..0x8000

Table 11.21: SPI Protocol Flags

Offset Field Size Value Description

0 chip_select 1 Number Chip Select Number

Table 11.22: SPI Device Config Request

Greybus SPI Protocol Bits Per Word Mask

The Greybus SPI bits per word mask allows the requestor to determine the mask indicating which values
of bits_per_word are supported by the SPI master. If set, transfer with unsupported bits_per_word should
be rejected. If not set, this value is simply ignored, and it’s up to the individual driver to perform any
validation.

Transfers should be rejected if following expression evaluates to zero:
master->bits_per_word_mask & (1 << (tx_desc->bits_per_word - 1))

Greybus SPI Protocol Flags Bit Masks

Table 11.21 describes the defined flags bit masks defined for Greybus SPI masters.

Greybus SPI Protocol Device Config Operation

The Greybus SPI Device Config operation allows the requestor to determine the details of the configuration
parameters of a access-enable device. This operation can be executed at any time, however it shall be executed
after the the Master Config Operation for each chipselect till the number given by the num_chipselect in
the Master Config Response. All transfer operations for the device should be discarded until the successful
execution of this operation.

Greybus SPI Protocol Device Config Request

Table 11.22 describes the Greybus SPI Device Config request. The request supplies the chip_select which is
a unique identifier between 0 and num_chipselect.

Greybus SPI Protocol Device Config Response

Table 11.23 defines the Greybus SPI Device Config response. The response contains a set of values repre-
senting the limits and default values of certain configurations of a device.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 226

Offset Field Size Value Description

0 mode 2 Bit Mask Greybus SPI Protocol Mode Bit Masks
2 bpw 1 Number bits per word supported by device

3 max_speed_hz 4 Number Higher limit for transfer speed

7 device_type 1 Number Greybus SPI Protocol Device Type

8 name 32 UTF-8 Name and/or Device driver alias

Table 11.23: SPI Protocol Device Config Response

Symbol Brief Description Value
GB_SPI.SPI.DEV SPI device is a generic bit bang SPI device 0x00
GB_SPI_.SPI_.NOR SPI device is a SPI NOR device that supports JEDEC id 0x01
GB_SPI.SPI.MODALIAS SPI device driver can be represented by the name field 0x02

(All other values reserved) 0x03..0xFF

Table 11.24: SPI Protocol Device Type Values

Greybus SPI Protocol Device Type

Table 11.24 defines the types of device associated with asked chip-select for Greybus SPI devices. The name
field in Greybus SPI Protocol Device Config Response shall be ignore if the Device Type is not equal to
GB_SPI_.SPI_.MODALIAS.

Greybus SPI Transfer Operation

The Greybus SPI transfer operation requests that the SPI master perform a SPI transaction. The operation
consists of a set of one or more gb_spi_transfer descriptors, which define data transfers to be performed by
the SPI master. The transfer operation request includes data for each gb_spi_transfer descriptor involving
a write operation. The data shall be sent immediately following the gb_spi_transfer descriptors (with no
intervening pad bytes). The transfer operation response includes data for each gb_spi_transfer descriptor
involving a read operation, with all read data transferred contiguously.

Greybus SPI Transfer Request

The Greybus SPI transfer request contains the slave’s chip select pin, its mode, a count of message descriptors,
an array of message descriptors, and a block of zero or more bytes of data to be written. Table 11.25 defines
the Greybus SPI gb_spi_transfer descriptor. This describes the configuration of a segment of a SPI
transaction.

Table 11.26 defines the Greybus SPI transfer request.

Offset Field Size Value Description

0 speed_hz 4 Number Transfer speed in Hz

4 len 4 Number Size of data to transfer

8 delay_usecs 2 Number Wait period after completion of transfer

10 cs_change 1 Number Toggle chip select pin after this transfer completes
11 bits_per_word 1 Number Select bits per word for this transfer

12 xfer_flags 1 Bit Mask Greybus SPI Transfer Flags Bits

Table 11.25: SPI Protocol gb_spi_transfer descriptor

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 227

Offset Field Size Value Description

0 chip-select 1 Number chip-select pin for the slave device

1 mode 1 Number Greybus SPI Protocol Mode Bit Masks

2 count 2 Number Number of gb_spi_transfer descriptors

4 op[1] 13 Structure First SPI gb_spi_transfer descriptor in the transfer
13 Structure ...

44+13*(N-1) op[N] 13 Structure Last SPI gb_spi_transfer descriptor

4+13*N data Data Data for all the write transfers

Table 11.26: SPI Protocol Transfer Request

Symbol Brief Description Mask Value
GB_SPI.XFER_-READ Read Transfer Descriptor 0x01
GB_SPI.XFER_WRITE Write Transfer Descriptor 0x02
GB_SPI_.XFER_INPROGRESS Indicate current operation will continue in next transfer 0x04

(All other values reserved) 0x08..0x80

Table 11.27: SPI Transfer Flags Bits

Any data to be written follows the last gb_spi_transfer descriptor. Data for the first write gb_spi_transfer
descriptor in the array immediately follows the last gb_spi_transfer descriptor in the array, and no padding
shall be inserted between data sent for distinct SPI gb_spi_transfer descriptors.

Greybus SPI Transfer Flags Bits

Table 11.27 describes possible transfer descriptors flags. Only the listed values are valid.

Greybus SPI Transfer Response

Table 11.28 defines the Greybus SPI transfer response. The response contains the data read as a result of
the request.

UART Protocol

A connection using the UART Protocol on a UniPro network is used to manage a simple UART controller.
This Protocol is very close to the CDC protocol for serial modems from the USB-IF specification, and consists
of the operations defined in this section.

The operations that can be performed on a Greybus UART controller are conceptually:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

Offset Field Size Value Description

0 data Data Data for first read gb_spi_transfer descriptor on the transfer
Data ...
Data Data for Last read gb_spi_transfer descriptor on the transfer

Table 11.28: SPI Protocol Transfer Response

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 228

int

int

int

int

int

int

int

int

UART Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80
Reserved 0x01 0x81
Send Data 0x02 0x82
Receive Data 0x03 0x83

Set Line Coding 0x04 0x84

Set Control Line State 0x05 0x85
Send Break 0x06 0x86
Serial State 0x07 0x87
Receive Credits 0x08 0x88
Flush 0x09 0x89

(all other values reserved) 0x10..0x7e 0x90..0xfe
Invalid 0x7f 0Oxff

Table 11.29: UART Operation Types

send_data(ul6 size, u8 *data);
Requests that the UART device begins transmitting characters. One or more bytes to be transmitted
shall be supplied by the sender.

receive_data(ul6 size, u8 flags, u8 *data);
Receive data from the UART and any line errors that might have occurred.

set_line_coding(u32 rate, u8 format, u8 parity, u8 data);
Sets the line settings of the UART to the specified baud rate, format, parity, and data bits.

set_control_line_state(u8 state);
Controls RTS and DTR line states of the UART.

send_break(u8 state);
Requests that the UART generate a break condition on its transmit line.

serial_state(u8 state);
Receives the state of the UART’s control lines.

receive_credits(ul6 count);
Receive transmit credits form the uart controller.

flush buffer(u8 flags);
Clear the internal uart queues.

UART Protocol Operations

This section defines the operations for a connection using the UART Protocol. The UART Protocol allows
a requestor to control a UART device contained within a Greybus Module.

Greybus UART Protocol Operations

Table 11.29 defines the Greybus UART operation types and their values. A message type consists of an
operation type combined with a flag (0x80) indicating whether the operation is a request or a response.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 229

Offset Field Size Value Description

0 size 2 Number Size in bytes of data to be transmitted
2 data size Data 1 or more bytes of data to be transmitted

Table 11.30: UART Protocol Send Data Request

Offset Field Size Value Description

0 size 2 Number Size in bytes of received data
2 flags 1 Bit mask Greybus UART Receive Data Status Flags
3 data size Data 1 or more bytes of received data

Table 11.31: UART Protocol Receive Data Request

Greybus UART CPort Shutdown Operation

The Greybus UART CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the UART Protocol.

Greybus UART Send Data Operation

The Greybus UART Send Data operation requests that the UART device begin transmission of characters.
One or more characters to be transmitted may optionally be provided with this request.

Greybus UART Send Data Request

Table 11.30 defines the Greybus UART send data request. This requests that the UART device begin
transmitting. The request optionally contains one or more characters to be transmitted.

Greybus UART Send Data Response

The Greybus UART send data response message has no payload.

Greybus UART Receive Data Operation
Unlike most other Greybus UART operations, the Greybus UART event operation is initiated by the device
implementing the UART Protocol. It notifies its peer that a data has been received by the UART.

Note that the UART Receive Data Operation is unidirectional and has no response.

Greybus UART Receive Data Request

Table 11.31 defines the Greybus UART receive data request. The request contains the size of the data to be
received, associated line-status flags, and the data bytes to be received. Every receive-data-request message
must have a size field >= 1, with firmware inserting a NUL byte as necessary when reporting a break event.
Note that overrun is special in that it is not associated with any particular character.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 230

Flag Value Description

Framing Error 0x01 Framing error detected

Parity Error 0x02 Parity error detected

Overrun 0x04 Received data lost due to overrun
Break 0x08 Break condition detected

(all other values reserved) 0x10..0x80

Table 11.32: UART Modem Receive Data Status Flags

Offset Field Size Value Description

0 rate 4 Number Baud Rate setting

4 format 1 Number Greybus UART Stop Bit Format

5 parity 1 Number Greybus UART Parity format

6 data_bits 1 Number Number of data bits

7 flow_control 1 Bit mask Greybus UART Flow Control Flags

Table 11.33: UART Protocol Set Line Coding State Request

Greybus UART Receive Data Status Flags

Table 11.32 defines the values supplied as flag values for the Greybus UART receive data request. Any
combination of these values may be supplied in a single request.

Greybus UART Set Line Coding Operation

The Greybus UART set line coding operation allows for configuration of the UART to a specific set of line
coding values.

Greybus UART Set Line Coding State Request

Table 11.33 defines the Greybus UART set line coding state request. The request contains the specific line
coding values to be set.

Greybus UART Stop Bit Format

Table 11.34 defines the Greybus UART stop bit formats.

Greybus UART Parity format

Table 11.35 defines the Greybus UART parity formats.

1 Stop Bit 0x00
1.5 Stop Bits 0x01
2 Stop Bits 0x02

(All other values reserved) 0x03..0xff

Table 11.34: UART Protocol Stop Bit Format

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 231

No Parity 0x00
0Odd Parity 0x01
Even Parity 0x02
Mark Parity 0x03
Space Parity 0x04

(All other values reserved) 0x05..0xff

Table 11.35: UART Protocol Parity Format

Flag Value Description

AUTO_RTSCTS 0x01 Enable automatic rts/cts
(all other values reserved) 0x02..0x80

Table 11.36: UART Protocol Flow Control Flags

Greybus UART Flow Control Flags

Table 11.36 defines the Greybus UART flow control bit mask.

Greybus UART Set Line Coding State Response

The Greybus UART set line coding state response message has no payload.

Greybus UART Set Control Line State Operation

The Greybus UART set control line state operation requests that the UART device set “outbound” UART
status values.

Greybus UART Set Control Line State Request

Table 11.37 defines the Greybus UART set control line state request. The request contains a bit mask of
modem status flags to set.

Greybus UART Modem Status Flags

Table 11.38 defines the values supplied as flag values for the Greybus UART set control line state request.
Any combination of these values may be supplied in a single request.

Greybus UART Set Control Line State Response

The Greybus UART set control line state response message has no payload.

Offset Field Size Value Description
0 control 1 Bit mask Greybus UART Modem Status Flags

Table 11.37: UART Protocol Set Control Line State Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 232

Flag Value Description
DTR 0x01 Data Terminal Ready
RTS 0x02 Request To Send

(all other values reserved) 0x04..0x80

Table 11.38: UART Modem Status Flags

Offset Field Size Value Description

0 state 1 Number 0 is off, 1 is on

Table 11.39: UART Protocol Break Control Request

Greybus UART Send Break Operation

The Greybus UART send break operation requests that the UART device set the break condition on its
transmit line to be either on or off.

Greybus UART Break Control Request

Table 11.39 defines the Greybus UART break control request. The requestq supplies the duration of the
break condition that should be generated by the UART device transmit line.

Greybus UART Break Control Response

The Greybus UART break control response message has no payload.

Greybus UART Serial State Operation
Unlike most other Greybus UART operations, the Greybus UART serial state operation is initiated by the

Module implementing the UART Protocol. It notifies the peer that a control line status has changed, or
that there is an error with the UART.

Note that the UART Serial State Operation is unidirectional and has no response.
Greybus UART Serial State Request

Table 11.40 defines the Greybus UART serial state request. The request contains the control value that the
UART is currently in.

Greybus UART Control Flags

Table 11.41 defines the flag values used for a Greybus UART serial state request.

Offset Field Size Value Description
0 control 1 Bit mask Greybus UART Control Flags

Table 11.40: UART Protocol Serial State Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 233

Flag Value Description

DCD 0x01 Carrier Detect line enabled
DSR 0x02 DSR signal

RI 0x04 Ring Signal detected

(all other values reserved) 0x08..0x80

Table 11.41: UART Control Flags

Offset Field Size Value Description

0 count 2 Number number of credits

Table 11.42: UART Protocol Receive Credits Request

Greybus UART Receive Credits Operation
The Greybus UART receive credits operation is initiated by the Module implementing the UART Protocol.

It notifies the peer that output data has been processed and more space has been made available in its
internal output buffers. For optimal performance, and when suitable, the module should aggregate credits.

Note that the UART receive credits operation is unidirectional and has no response.
Greybus UART Receive Credits Request

Table 11.42 defines the Greybus UART receive credits request. The request contains the amount of credits
that has been processed and that is now available to the peer for more output data.

Greybus UART FLUSH Operation

The Greybus UART Flush operation requests the UART device to discard data that has been stored inter-
nally and is waiting to be processed.

Greybus UART Flush Request

Table 11.43 defines the Greybus UART flush request. This requests the UART device to discard data that
has been queued.

Greybus UART Flush Flags

Table 11.44 defines the Greybus UART flush flags bit mask.

Greybus UART Flush Response

The Greybus UART flush response message has no payload.

Offset Field Size Value Description
0 flags 1 Bit mask Greybus UART Flush Flags

Table 11.43: UART Protocol Flush Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 234

Flag Value Description
FLUSH_-TRANSMITTER 0x01 Flush transmitter queue(s)
FLUSH_RECEIVER 0x02 Flush receiver queue(s)

(all other values reserved) 0x04..0x80

Table 11.44: UART Protocol Flush Flags

PWM Protocol

A connection using PWM Protocol on a UniPro network is used to manage a simple PWM controller. Such
a PWM controller implements one or more (up to 256) PWM devices, and each of the operations below
specifies the line to which the operation applies. This Protocol consists of the operations defined in this
section.

Conceptually, the PWM Protocol operations are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int pwm_count(u8 *count);
Returns one less than the number of instances managed by the Greybus PWM controller. This means
the minimum number of PWMs is 1 and the maximum is 256.

int activate(u8 which);
Notifies the PWM controller that one of its instances has been assigned for use.

int deactivate(u8 which);
Notifies the PWM controller that a previously activated instance has been unassigned and can be
deactivated.

int config(u8 which, u32 duty, u32 period);
Requests the PWM controller configure an instance for a particular duty cycle and period (in units of
nanoseconds).

int set_polarity(u8 which, u8 polarity);
Requests the PWM controller configure an instance as normally active or inverted.

int enable(u8 which);
Requests the PWM controller enable a PWM instance to begin toggling.

int disable(u8 which);
Requests the PWM controller disable a previously enabled PWM instance

Greybus PWM Protocol Operations

All operations sent to a PWM controller are contained within a Greybus PWM request message. Every
operation request results in a response from the PWM controller, also taking the form of a PWM controller
message. The request and response messages for each PWM operation are defined below.

Table 11.45 describes the Greybus PWM Protocol operation types and their values. Both the request type
and response type values are shown.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 235

PWM Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80
Reserved 0x01 0x81
PWM count 0x02 0x82
Activate 0x03 0x83
Deactivate 0x04 0x84
Config 0x05 0x85

Set Polarity 0x06 0x86
Enable 0x07 0x87
Disable 0x08 0x88

(all other values reserved) 0x09..0x7e 0x89..0xfe
Invalid Ox7f Oxff

Table 11.45: PWM Operation Types

Offset Field Size Value Description

0 count 1 Number Number of PWM instances minus 1

Table 11.46: PWM Protocol Count Response

Greybus PWM CPort Shutdown Operation

The Greybus PWM CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the PWM Protocol.

Greybus PWM Count Operation

The Greybus PWM count operation allows the requestor to determine how many PWM instances are im-
plemented by the PWM controller.

Greybus PWM Count Request

The Greybus PWM count request message has no payload.

Greybus PWM Count Response

Table 11.46 defines the Greybus PWM count response. The response contains a one-byte value defining the
number of PWM instances managed by the controller, minus one. That is, a count value of zero represents a
single PWM instance, while a (maximal) count value of 255 represents 256 instances. The lines are numbered
sequentially starting at zero.

Greybus PWM Activate Operation

The Greybus PWM activate operation notifies the PWM controller that one of its PWM instances has been
allocated for use. This provides a chance to do initial setup for the PWM instance, such as enabling power
and clock signals.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 236

Offset Field Size Value Description

0 which 1 Number Controller-relative PWM instance number

Table 11.47: PWM Protocol Activate Request

Offset Field Size Value Description

0 which 1 Number Controller-relative PWM instance number

Table 11.48: PWM Protocol Deactivate Request

Greybus PWM Activate Request

Table 11.47 defines the Greybus PWM activate request. The request supplies only the number of the instance
to be activated.

Greybus PWM Activate Response

The Greybus PWM activate response message has no payload.

Greybus PWM Deactivate Operation

The Greybus PWM instance deactivate operation notifies the PWM controller that a previously activated
instance is no longer in use and can be deactivated.

Greybus PWM Deactivate Request

Table 11.48 defines the Greybus PWM deactivate request. The request supplies only the number of the
instance to be deactivated.

Greybus PWM Deactivate Response

The Greybus PWM deactivate response message has no payload.

Greybus PWM Configure Operation

The Greybus PWM configure operation requests the PWM controller configure a PWM instance with the
given duty cycle and period.

Greybus PWM Configure Request

Table 11.49 defines the Greybus PWM configure request. The request supplies the target instance number,
duty cycle, and period of the cycle.

Greybus PWM Configure Response

The Greybus PWM configure response message has no payload.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 237

Offset Field Size Value Description

0 which 1 Number Controller-relative PWM instance number
1 duty 4 Number Duty cycle (in nanoseconds)
5 period 4 Number Period (in nanoseconds)

Table 11.49: PWM Protocol Configure Request

Offset Field Size Value Description
0 which 1 Number Controller-relative PWM instance number
1 polarity 1 Number 0 for normal, 1 for inverted

Table 11.50: PWM Protocol Polarity Request

Greybus PWM Polarity Operation

The Greybus PWM polarity operation requests the PWM controller configure a PWM instance with the
given polarity.

Greybus PWM Polarity Request

Table 11.50 defines the Greybus PWM polarity request. The request supplies the target instance number
and polarity (normal or inverted). The polarity may not be configured when a PWM instance is enabled.

Greybus PWM Polarity Response

The Greybus PWM polarity response message has no payload.

Greybus PWM Enable Operation

The Greybus PWM enable operation enables a PWM instance to begin toggling.

Greybus PWM Enable Request

Table 11.51 defines the Greybus PWM enable request. The request supplies only the number of the instance
to be enabled.

Greybus PWM Enable Response

The Greybus PWM enable response message has no payload.

Offset Field Size Value Description

0 which 1 Number Controller-relative PWM instance number

Table 11.51: PWM Protocol Enable Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 238

Offset Field Size Value Description

0 which 1 Number Controller-relative PWM instance number

Table 11.52: PWM Protocol Disable Request

Greybus PWM Disable Operation

The Greybus PWM disable operation stops a PWM instance that has previously been enabled.

Greybus PWM Disable Request

Table 11.52 defines the Greybus PWM disable request. The request supplies only the number of the instance
to be disabled.

Greybus PWM Disable Response

The Greybus PWM disable response message has no payload.

12C Protocol

This section defines the operations used on a connection implementing the Greybus 12C Protocol. This
Protocol allows for management of an 12C device present on a Module. The Protocol consists of five basic
operations, whose request and response message formats are defined here.

Conceptually, the five operations in the Greybus I2C Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int get_functionality(u32 *functionality);
Returns a bitmask indicating the features supported by the 12C adapter.

int transfer(u8 op_count, struct i2c_op *ops);
Performs an 12C transaction made up of one or more “steps” defined in the supplied 12C op array.

A transfer is made up of an array of “I2C ops”, each of which specifies an 12C slave address, flags controlling
message behavior, and a length of data to be transferred. For write requests, the data is sent following the
array of messages; for read requests, the data is returned in a response message from the I12C adapter.

Greybus 12C Message Types

Table 11.53 defines the Greybus I12C operation types and their values. A message type consists of an operation
type combined with a flag (0x80) indicating whether the operation is a request or a response.

Greybus 12C CPort Shutdown Operation

The Greybus 12C CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the 12C Protocol.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 239

I12C Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80

Reserved 0x01 0x81
Functionality 0x02 0x82

Reserved 0x03 0x83

Reserved 0x04 0x84

Transfer 0x05 0x85

(all other values reserved) 0x06..0x7e 0x86..0xfe
Invalid 0x7f Oxff

Table 11.53: 12C Operation Types

Offset Field Size Value Description

0 functionality 4 Number Greybus I2C Functionality Bit Masks

Table 11.54: 12C Protocol Functionality Response

Greybus 12C Functionality Operation

The Greybus I12C functionality operation allows the requestor to determine the details of the functionality
provided by the I2C adapter.

Greybus 12C Functionality Request

The Greybus I12C functionality request message has no payload.

Greybus 12C Functionality Response

Table 11.54 defines the Greybus 12C functionality response. The response contains a four-byte value whose
bits represent support or presence of certain functionality in the 12C adapter.

Greybus 12C Functionality Bit Masks

Table 11.55 defines the functionality bit masks for Greybus I2C adapters. These include a set of bits
describing SMBus capabilities. These values are taken directly from the <linux/i2c.h> header file.

Greybus 12C Transfer Operation

The Greybus I12C transfer operation requests that the 12C adapter perform an I2C transaction. The operation
consists of a set of one or more “I2C ops” to be performed by the 12C adapter. The transfer operation request
includes data for each 12C op involving a write operation. The data is concatenated (without padding) and
is sent immediately after the set of 12C op descriptors. The transfer operation response includes data for
each 12C op involving a read operation, with all read data transferred contiguously.

Greybus 12C Transfer Request

The Greybus 12C transfer request contains a message count, an array of message descriptors, and a block of
zero or more bytes of data to be written.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 240
Linux Symbol Brief Description Mask Value
12C_FUNC_I2C Basic 12C protocol (not SMBus) support 0x00000001
I2C_FUNC_10BIT_ADDR 10-bit addressing is supported 0x00000002

(Reserved) 0x00000004
I2C_FUNC_SMBUS_PEC SMBus CRC-8 byte added to transfers (PEC) 0x00000008
I2C_FUNC_NOSTART Repeated start sequence can be skipped 0x00000010

(Reserved range) 0x00000020..0x00004000
I2C_FUNC_SMBUS_BLOCK_PROC_CALL SMBus block write-block read process call supported 0x00008000
I2C_FUNC_SMBUS_QUICK SMBus write_quick command supported 0x00010000
I2C_FUNC_SMBUS_READ BYTE SMBus read_byte command supported 0x00020000
I2C_FUNC_SMBUS_WRITE_ BYTE SMBus write_byte command supported 0x00040000
I2C_FUNC_SMBUS_READ BYTE_DATA SMBus read_byte_data command supported 0x00080000
12C_FUNC_SMBUS_WRITE BYTE_DATA SMBus write_byte_data command supported 0x00100000
12C_FUNC_SMBUS_READ_WORD_DATA SMBus read_word_data command supported 0x00200000
I2C_FUNC_SMBUS_WRITE_ WORD_DATA SMBus write_word_data command supported 0x00400000
12C_FUNC_SMBUS_PROC_CALL SMBus process_call command supported 0x00800000
[2C_FUNC_SMBUS_READ _BLOCK_DATA SMBus read_block data command supported 0x01000000
I2C_FUNC_SMBUS_WRITE BLOCK_DATA SMBus write_block_data command supported 0x02000000
[2C_FUNC_SMBUS_READ 12C_BLOCK SMBus read_i2c_block data command supported 0x04000000
12C_FUNC_SMBUS_WRITE_12C_BLOCK SMBus write_i2c_block_data command supported 0x08000000

(All other values reserved)

0x10000000..0x80000000

Table 11.55: 12C Functionality Bit Masks

Offset Field Size Value Description

0 addr 2 Number Slave address

2 flags 2 Number Greybus I2C Op Flag Bit Masks
4 size 2 Number Size of data to transfer

Table 11.56: 12C Op

Table 11.56 defines the Greybus I2C op. An I12C op describes a segment of an 12C transaction.

Greybus 12C Op Flag Bit Masks

Table 11.57 defines the defined flag bit masks defined for Greybus I2C ops. They are taken directly from
the <linux/i2c.h> header file.

Table 11.58 defines the Greybus I2C transfer request.

Any data to be written follows the last op descriptor. Data for the first write op in the array immediately
follows the last op in the array, and no padding shall be inserted between data sent for distinct 12C ops.

Linux Symbol Brief Description Mask Value
12C_ M _RD Data is to be read (from slave to master) 0x0001
(Reserved range) 0x0002..0x0008
I2C_M_TEN 10-bit addressing is supported 0x0010
(Reserved range) 0x0020..0x0200
[2C_.M_RECV_LEN First byte received contains length 0x0400
(Reserved range) 0x0800..0x2000
I2C_.M_NOSTART Skip repeated start sequence 0x4000
(Reserved) 0x8000

Table 11.57: 12C Protocol Op Flag Bit Masks

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 241

Offset Field Size Value Description

0 op_count 2 Number Number of I2C ops in transfer

2 opl[1] 6 Structure Descriptor for first I2C op in the transfer

6 Structure ...

2+6*(N-1) op[N] 6 Structure Descriptor for last I2C op

24+6*N data 6 Data Data for first write op in the transfer
Data Data for last write op on the transfer

Table 11.58: 12C Protocol Transfer Request

Offset Field Size Value Description

0 data Data Data for first read op on the transfer
Data ...
Data Data for last read op on the transfer

Table 11.59: 12C Protocol Transfer Response

Greybus 12C Transfer Response

Table 11.59 defines the Greybus I12C transfer response. The response contains the data read as a result of
messages.

SDIO Protocol

This section defines the operations used on a connection implementing the Greybus SDIO Protocol. This
Protocol allows for management of a SDIO device present on a Module. The Protocol consists of operations,
whose request and response message formats are defined here.

Conceptually, the operations in the Greybus SDIO Protocol are:

int cport_shutdown(u8 phase);
See Common Greybus Protocol CPort Shutdown Operation.

int get_capabilities(u32 *caps, u32 *ocr, ul6 *max_blk count, ul6 *max_blk_size);
Request the SDIO controller to return a set of capabilities available, supported voltage ranges and
maximum block count/size per data command transfer.

int set_ios(struct gb_sdio_ios *ios);
Request the SDIO controller to setup various parameters related with the interface.

int command(u8 cmd, u8 cmd flags, u8 cmd_type, u32 arg, u32 *respl4]);
Send a control command as specified by the SD Association and return the correspondent response.

int transfer(u8 data flags, ul6 *data blocks, ul6é *data blksz, u8 *data);
Performs a SDIO data transaction defined by the size to be send/received.

int sdio_event(u8 event);
The SDIO controller notifies the recipient of SD card related events.

Greybus SDIO Protocol Operations

All operations sent to a SDIO controller are contained within a Greybus SDIO request message. Every
operation request results in a matching response from the SDIO controller, also taking the form of a SDIO

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 242

SDIO Operation Type Request Value Response Value
CPort Shutdown 0x00 0x80

Reserved 0x01 0x81

Get Capabilities 0x02 0x82

Set Tos 0x03 0x83
Command 0x04 0x84

Transfer 0x05 0x85

Event 0x06 N/A

(all other values reserved) 0x07..0x7e 0x87..0xfe
Invalid 0x7f Oxff

Table 11.60: SDIO Operation Types

Offset Field Size Value Description

0 caps 4 Bit Mask Greybus SDIO Get Capabilities Bit Masks

4 ocr 4 Bit Mask Greybus SDIO Protocol Voltage Range Bit Mask

8 f min 4 Number Minimum frequency supported by the controller

12 f_ max 4 Number Maximum frequency supported by the controller

16 max_blk_count 2 Number Maximum Number of blocks per data command transfer
18 max_blk _size 2 Number Maximum size of each block to transfer

Table 11.61: SDIO Protocol Get Capabilities Response

controller message. The request and response messages for each SDIO operation are defined below.

Table 11.60 defines the Greybus SDIO Protocol operation types and their values. Both the request type and
response type values are shown.

Greybus SDIO CPort Shutdown Operation

The Greybus SDIO CPort Shutdown Operation is the Common Greybus Protocol CPort Shutdown Operation
for the SDIO Protocol.

Greybus SDIO Get Capabilities Operation

The Greybus SDIO Get Capabilities operation allows the requester to fetch capabilities that are supported
by the Controller.

Greybus SDIO Get Capabilities Request

The Greybus SDIO Get Capabilities request message has no payload.

Greybus SDIO Get Capabilities Response

The Greybus SDIO Get Capabilities response message returns value whose bits represent the support of
certain capability from the SDIO controller, as defined in table 11.61.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

243

Symbol Brief Description Mask Value
GB_SDIO_CAP_.NONREMOVABLE Device is unremovable from the slot 0x00000001
GB_SDIO_CAP_4 BIT_DATA Host support 4 bit transfers 0x00000002
GB_SDIO_CAP_8_BIT_DATA Host support 8 bit transfers 0x00000004
GB_SDIO_CAP_MMC_HS Host support mmec high-speed timings 0x00000008
GB_SDIO_CAP_SD_HS Host support SD high-speed timings 0x00000010
GB_SDIO_CAP_ERASE Host allow erase and trim commands 0x00000020
GB_SDIO_CAP_1.2V_DDR Host support DDR mode at 1.2V 0x00000040
GB_SDIO_CAP_1.8V_DDR Host support DDR mode at 1.8V 0x00000080
GB_SDIO_CAP_POWER_OFF_CARD Host can power off card 0x00000100
GB_SDIO_CAP_UHS_SDR12 Host support UHS SDR12 mode 0x00000200
GB_SDIO_CAP_UHS_SDR25 Host support UHS SDR25 mode 0x00000400
GB_SDIO_CAP_UHS_SDR50 Host support UHS SDR50 mode 0x00000800
GB_SDIO_CAP_UHS_SDR104 Host support UHS SDR104 mode 0x00001000
GB_SDIO_CAP_UHS_DDR50 Host support UHS DDR50 mode 0x00002000
GB_SDIO_CAP_DRIVER_TYPE_A Host support Driver Type A 0x00004000
GB_SDIO_CAP_DRIVER_TYPE_C Host support Driver Type C 0x00008000
GB_SDIO_CAP_DRIVER_TYPE_D Host support Driver Type D 0x00010000
GB_SDIO_CAP_HS200_1_2V Host support HS200 mode at 1.2V 0x00020000
GB_SDIO_CAP_HS200_.1.8V Host support HS200 mode at 1.8V 0x00040000
GB_SDIO_CAP_HS400_.12V Host support HS400 mode at 1.2V 0x00080000
GB_SDIO_CAP_HS400_.1.8V Host support HS400 mode at 1.8V 0x00100000

(All other mask values reserved)

0x00200000..0x80000000

Table 11.62: SDIO Protocol Get Capabilities Bit Masks

Offset Field

Size

Value Description

0 op

14

Structure

SDIO gb_sdio_ios descriptor

Table 11.63: SDIO Protocol Set Ios Request

Greybus SDIO Get Capabilities Bit Masks

Table 11.62 define the Capabilities bit masks for Greybus SDIO.

Greybus SDIO Set los Operation

The Greybus SDIO Set los operation allows the requester to setup parameters listed in to SDIO controller

Greybus SDIO Set los Request

Table 11.63 defines the Greybus SDIO Set Ios request. The request shall pass a descriptor which contains a
set of parameters for configuring the SDIO controller.

Table 11.64 defines the Greybus SDIO gb_sdio_ios. This describes the parameters to configure the SDIO

controller.

Greybus SDIO Protocol Voltage Range Bit Mask

Table 11.65 defines the voltage ranges bit masks for the Greybus SDIO controllers.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 244

Offset Field Size Value
0 clock 4

Description

Number clockrateinHz

4 vdd 4 Number Greybus SDIO Protocol Voltage Range Bit Mask

8 bus_mode 1 Number Greybus SDIO Protocol Bus Mode

9 power_mode 1 Number Greybus SDIO Protocol Power Mode

10 bus_width 1 Number Greybus SDIO Protocol Bus Width

11 timing 1 Number Greybus SDIO Protocol Timing

12 signal_voltage 1 Number Greybus SDIO Protocol Signal Voltage

13 drv_type 1 Number Greybus SDIO Protocol Driver Type

Table 11.64: SDIO Protocol Set Tos Descriptor

Symbol Brief Description Mask Value
GB_SDIO_VDD_165_195 VDD voltage 1.65 - 1.95 0x00000001
GB_SDIO_VDD_20_21 VDD voltage 2.0 2.1 0x00000002
GB_SDIO_VDD_21.22 VDD voltage 2.1 2.2 0x00000004
GB_SDIO_VDD_22 23 VDD voltage 2.2 2.3 0x00000008
GB_SDIO_VDD_23.24 VDD voltage 2.3 2.4 0x00000010
GB_SDIO_VDD_24_25 VDD voltage 2.4 2.5 0x00000020
GB_SDIO_VDD_25_26 VDD voltage 2.5 2.6 0x00000040
GB_SDIO_VDD_26_27 VDD voltage 2.6 2.7 0x00000080
GB_SDIO_VDD_27_28 VDD voltage 2.7 2.8 0x00000100
GB_SDIO_VDD_28_29 VDD voltage 2.8 2.9 0x00000200
GB_SDIO_VDD_29_30 VDD voltage 2.9 3.0 0x00000400
GB_SDIO_VDD_30.31 VDD voltage 3.0 3.1 0x00000800
GB_SDIO_VDD_31_32 VDD voltage 3.1 3.2 0x00001000
GB_SDIO_VDD_32.33 VDD voltage 3.2 3.3 0x00002000
GB_SDIO_VDD_33.34 VDD voltage 3.3 3.4 0x00004000
GB_SDIO_VDD_34_35 VDD voltage 3.4 3.5 0x00008000
GB_SDIO_VDD_35_36 VDD voltage 3.5 3.6 0x00010000

(All other mask values reserved)

0x00020000..0x80000000

Table 11.65: SDIO Protocol Voltage Range Bit Masks

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 245

Symbol Brief Description Value

GB_SDIO_BUSMODE_OPENDRAIN SDIO open drain bus mode 0x00
GB_SDIO_BUSMODE_PUSHPULL SDIO push-pull bus mode 0x01
(All other values reserved) 0x02..0xfl

Table 11.66: SDIO Protocol Bus Mode

Symbol Brief Description Value
GB_SDIO_POWER_OFF SDIO power off 0x00
GB_SDIO_POWER_UP SDIO power up 0x01
GB_SDIO_POWER_ON SDIO power on 0x02
GB_SDIO_POWER_UNDEFINED SDIO power undefined 0x03

(All other values reserved) 0x04..0xff

Table 11.67: SDIO Protocol Power Mode

Greybus SDIO Protocol Bus Mode

Table 11.66 defines the Mode in which the Bus should be set for operation.

Greybus SDIO Protocol Power Mode

Table 11.67 defines the power supply mode in which the slot should be set.

Greybus SDIO Protocol Bus Width

Table 11.68 defines the values in which the data bus width can be set.

Greybus SDIO Protocol Timing

Table 11.69 defines the timing specification values for the bus.

Greybus SDIO Protocol Signal Voltage

Table 11.70 defines the signal voltage values allowed to be set for the bus.

Greybus SDIO Protocol Driver Type

Table 11.71 defines the driver strength types in which the Controller shall be configured.

Symbol Brief Description Value

GB_SDIO_BUS_WIDTH_1 SDIO data bus width 1 bit mode 0x00
GB_SDIO_BUS_WIDTH_4 SDIO data bus width 4 bit mode 0x02
GB_SDIO_BUS_WIDTH_8 SDIO data bus width 8 bit mode 0x03

(All other values reserved) 0x04..0xff

Table 11.68: SDIO Protocol Bus Width

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

246

Symbol Brief Description Value
GB_SDIO_TIMING_LEGACY Default speed 0x00
GB_SDIO_TIMING_-MMC_HS MMC High speed 0x01
GB_SDIO_TIMING_SD_HS SD High speed 0x02
GB_SDIO_TIMING_UHS_SDR12 Ultra High Speed SDR12 0x03
GB_SDIO_TIMING_UHS_SDR25 Ultra High Speed SDR25 0x04
GB_SDIO_TIMING_UHS_SDR50 Ultra High Speed SDR50 0x05
GB_SDIO_TIMING_UHS_SDR104 Ultra High Speed SDR104 0x06
GB_SDIO_TIMING_UHS_DDR50 Ultra High Speed DDR50 0x07
GB_SDIO_TIMING_MMC_DDR52 MMC DDR52 0x08
GB_SDIO_TIMING_MMC_HS200 MMC HS200 0x09
GB_SDIO_TIMING_MMC_HS400 MMC HS400 0x0A

(All other values reserved) 0x0B..0xff

Table 11.69: SDIO Protocol Timing

Symbol Brief Description Value
GB_SDIO_SIGNAL_VOLTAGE_330 Signal Voltage = 3.30V 0x00
GB_SDIO_SIGNAL_VOLTAGE_180 Signal Voltage = 1.80V 0x01
GB_SDIO_SIGNAL_VOLTAGE_120 Signal Voltage = 1.20V 0x02

(All other values reserved) 0x03..0xff

Table 11.70: SDIO Protocol Signal Voltage

Symbol Brief Description Value
GB_SDIO_SET_DRIVER_TYPE_B Driver Type B 0x00
GB_SDIO_SET_DRIVER_TYPE_A Driver Type A 0x01
GB_SDIO_SET_DRIVER_TYPE_C Driver Type C 0x02
GB_SDIO_SET_DRIVER_TYPE_D Driver Type D 0x03

(All other values reserved) 0x04..0xff

Table 11.71: SDIO Protocol Driver Type

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0

247

Offset Field Size Value Description
0 cmd 1 Number SDIO command operation code, as specified by SD Association
1 cmd_flags 1 Bit Mask Greybus SDIO Protocol Command Flags
2 cmd_type 1 Number Greybus SDIO Protocol Command Type
3 arg 4 Number SDIO command arguments, as specified by SD Association
7 data_blocks 2 Number If data is available, represents the number of total blocks to transfer, 0 otherwise
9 data_blksz 2 Number If data is available, represents the size of the blocks to transfer, 0 otherwise
Table 11.72: SDIO Protocol Command Request
Symbol Brief Description Mask Value

GB_SDIO_RSP_NONE

GB_SDIO_RSP_PRESENT

GB_SDIO_RSP_136
GB_SDIO_RSP_CRC
GB_SDIO_RSP_BUSY

GB_SDIO_RSP_OPCODE

No Response is expected by the command 0x00
Response is expected by the command 0x01
Long response is expected by the command 0x02
A valid CRC is expected by the command 0x04

Card may send a busy response 0x08
Response contains opcode 0x10
(All other values reserved) 0x20..0xff

Table 11.73: SDIO Protocol Command Flags

Greybus SDIO Set los Response

The Greybus SDIO Set los response message has no payload.

Greybus SDIO Command Operation

The Greybus SDIO Command operation allows the requester to send control commands as specified by the
SD Association to the SDIO controller.

Greybus SDIO Command Request

Table 11.72 defines the Greybus SDIO Command request.

Greybus SDIO Protocol Command Flags

Table 11.73 defines the flags that can be passed to a command.

Greybus SDIO Protocol Command Type

Table 11.74 defines the command type passed to the MMC/SD card.

Greybus SDIO Command Response

Table 11.75 defines the Greybus SDIO Command response.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 248

Symbol Brief Description Value
GB_SDIO_CMD_AC Addressed Command 0x00
GB_SDIO_.CMD_ADTC Addressed Data Transfer Command 0x01
GB_SDIO_CMD_BC Broadcasted Command, no response 0x02
GB_SDIO_CMD_BCR Broadcasted Command with response 0x03

(All other values reserved) 0x04..0xff

Table 11.74: SDIO Protocol Command Type

Offset Field Size Value Description

0 resp 16 Number SDIO command response, as specified by SD Association

Table 11.75: SDIO Protocol Command Response

Greybus SDIO Transfer Operation

The Greybus SDIO Transfer operation allows the requester to send or receive data blocks and shall be
preceded by a Greybus Command Request for data transfer command as specified by SD Association.

Greybus SDIO Transfer Request

Table 11.76 defines the Greybus SDIO Transfer request.

If data_flags field have the GB_.SDIO_DATA_WRITE flag set, the size field define the length in bytes of data
to be transfer in the data field. If data_flags field have the GB_.SDIO_DATA_READ set, the size field define
the length of data to be read and for that the data field is empty.

Greybus SDIO Transfer Response

Table 11.78 defines the Greybus SDIO Transfer response.

If Request data_flags field have the GB_.SDIO_DATA_WRITE flag set, the size field represent the size of data
received in the Request in case of success. If data_flags field have the GB_SDIO_DATA _READ set, the size
field defines the length of the data appended in the data field.

Greybus SDIO Event Operation

The Greybus SDIO Event operation signals to the recipient that a change in the device setup have occurred
in the SDIO controller.

This operation is unidirectional and does not have a correspondent response.

Offset Field Size Value Description

0 data_flags 1 Number SDIO data flags

1 data_blocks 2 Number SDIO number of blocks of data to transfer
3 data_blksz 2 Number SDIO size of the blocks of data to transfer
5 data Data SDIO Data

Table 11.76: SDIO Protocol Transfer Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 249

Symbol Brief Description Value
GB_SDIO_DATA_WRITE Data present in data_blocks request to be written 0x01
GB_SDIO_DATA_READ Data present in data_blocks response to be read 0x02
GB_SDIO_DATA STREAM Data will be transfer until a cancel command is send 0x04

(All other values reserved) 0x08..0x80

Table 11.77: SDIO Protocol Transfer Data Flags

Offset Field Size Value Description
0 data_blocks 2 Number SDIO number of blocks of data to transfer
2 data_blksz 2 Number SDIO size of the blocks of data to transfer
4 data Data SDIO Data

Table 11.78: SDIO Protocol Transfer Request

Greybus SDIO Event Request

Table 11.79 defines the Greybus SDIO Event Request. The Request supplies the one-byte event that has
occurred on the sending controller.

Greybus SDIO Event Bit Masks

Table 11.80 defines the bit masks which specify the set of events that a controller can trigger related to
SD card. If card have the GB_SDIO_CAP_NONREMOVABLE capability, the card detection events shall be

ignored.

Offset Field Size Value Description
0 event 1 Bit Mask Greybus SDIO Event Bit Masks

Table 11.79: SDIO Protocol Detect Event Request

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 250

Symbol Brief Description Mask Value
GB_SDIO_CARD_INSERTED Card insertion detect 0x01
GB_SDIO_CARD_REMOVED Card removed detect 0x02
GB_SDIO_WP Card Write Protect Switch 0x04

(All other values reserved) 0x08..0x80

Table 11.80: SDIO Protocol Event Bit Mask

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 251

Chapter 12

Module and Interface Lifecycles

Chapters Greybus Hardware Model and Special Protocols have respectively defined the Interface Lifecycle
and various Operations which affect the related Interfaces within Modules and Interface States within the
Frame in a Greybus System.

Using these definitions, this chapter describes an additional state machine, the Module Lifecycle, as well as
the transitions between nodes in the Interface Lifecycle state machine in more detail.

The Module Lifecycle

The Module Lifecycle state machine diagram is as follows.

MODULE ATTACHED

module attachmodule detach

MODULE DETACHED

A Module‘s relationship with the Greybus System is simple: the module is either attached to the Frame
via one or more Interface Blocks in exactly one Slot, in which case the entire Module is in the MOD-
ULE_ATTACHED state, or it has been detached entirely, in which case it is not considered a part of the
Greybus System.

The following sections describe the relationship between these states, the transitions between them, and
certain Greybus Operations.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 252

Module Attach

TODO

Module Detach

TODO

The Interface Lifecycle

The Greybus Hardware Model defined the concept of an Interface, and Interface Lifecycle States introduced
a related set of Interface Lifecycle States, along with a state machine which operates on Lifecycle States, the
Interface Lifecycle.

A subsequent chapter defined the Special Protocols, which include Operation definitions that affect Interfaces’
Lifecycle States.

This section describes the relationships between these Protocols and the Interface Lifecycle in more detail,
and specifies Operation sequences which may be successfully exchanged to cause Interfaces to change Lifecycle
States.

The following sections describe the relationship between these states, as well as how transitions between
them may occur in a Greybus System.

For convenience, the Interface Lifecycle state machine diagram and the Interface States associated with each
Interface Lifecycle State are reproduced here:

early power_down early eject

power_down

Any State

orcible_removal

DETACHED

The possible Interface States for when an Interface is ATTACHED are shown in Table 5.13.

The possible Interface States for when an Interface is ACTIVATED are shown in Table 5.15.

The possible Interface States for when an Interface is ENUMERATED are shown in Table 5.16.

The possible Interface States for when an Interface is MODE_SWITCHING are shown in Table 5.17.
The possible Interface States for when an Interface is TIME_SYNCING are shown in Table 5.18.
The possible Interface States for when an Interface is SUSPENDED are shown in Table 5.19.

The possible Interface States for when an Interface is OFF are shown in Table 5.20.

A Module is not attached to the Interface Block in the DETACHED Interface Lifecycle State, which has the
unique Interface State shown in Table 5.21.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 253

Connection Management
This section describes the sequences required to manage Greybus Connections during the Interface Lifecycle.

Since all Greybus Operations are exchanged via UniPro Messages, these requirements are a superset of those
required by UniPro for establishing communication via CPorts.

Control Connection Establishment

Note: The content in this section is defined under the assumption that there is exactly one AP Interface
in the Greybus System.

The results if there are multiple AP Interfaces are undefined.

During SVC Protocol Operation processing defined in Greybus SVC' Interface Activate Operation and Grey-
bus SVC Interface Resume Operation, an Interface may signal to the Frame that it is capable of Greybus
Communication, and that its Control CPort user is ready to respond to Control Protocol Operations. This
can also occur during the processing of a Greybus Control Mode Switch Operation.

The following sequence may be used to establish a Control Connection to an Interface for subsequent use.

AP SVC

gb_svc| connection create(AP 11D, AP CPID, D, 0, 0, E2ZEFC | CSD N | (JSV_N)

gh svc connection create rsp[GB COP SUCCESS]

Though the AP may follow this sequence at any time, the AP should only do so during one of the following
transitions in the Interface Lifecycle state machine:

e “enumerate”, as described in Enumerate (ACTIVATED — ENUMERATED),

e “resume”, as described in Resume (SUSPENDED — ENUMERATED), or

e “ms_exit”, as described in Mode Switch Exit (MODE_SWITCHING — ENUMERATED).
If the AP follows this sequence at other times, the results are undefined.
To perform this sequence, the following conditions shall hold.

e The AP Interface and SVC shall have established a Connection implementing the SVC Protocol. This
is the SVC Connection in this sequence. This implies the AP Interface has a Device ID set.

e Another Interface shall be provided, which has a Control CPort.

If these conditions do not all hold, the sub-sequence shall not be followed. The results of following this
sub-sequence in this case are undefined.

The following values are used in this sub-sequence:
e The AP Interface ID is ap_interface_id.

e The CPort ID of a CPort on the AP Interface which is used to establish the Control Connection is
ap_cport_id.

e The Interface ID of the other Interface is interface_id.
1. The AP shall initiate a Greybus SVC Connection Create Operation to establish the Control Connection.

The intfl_.id and cportl_id fields in the request payload shall respectively equal ap_interface_id and
ap_cport_id. The intf2_id and cport2_id fields in the request payload shall respectively equal interface_id
and zero.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 254

The tc field in the request payload shall equal zero. The flags field in the request payload should equal
0x7 (E2EFC | CSD_N | CSV.N).

The sequence is complete. If this Operation fails, the sequence has failed. If it succeeds, the sequence
has succeeded.

2. The sequence is now complete and has succeeded or failed.

If the sequence succeeds, the AP Interface may inititate Control Protocol Operations with the Interface by
sending requests using CPort ap_cport_id.

If the sequence fails, the AP should not attempt to initiate Control Protocol Operations with the Interface.
If the AP does so under this condition, the results are undefined.

Non-Control Connection Establishment

Note: The content in this section is defined under the following assumptions:
e there is exactly one AP Interface in the Greybus System.
e The Connection being established is between that AP Interface and another Interface in the System.

The results if there are multiple AP Interfaces, or in the case of non-AP to non-AP Interfaces, are undefined.

If an Interface is ENUMERATED, the AP can establish additional Connections to the Interface in addition
to the existing Control Connection.

The following sequence may be used to establish such a Connection to an Interface for subsequent use.

AP SVC Control Connection
gb_svc_connection create(AP 11D, AP CPID, IID, CPID, 0, flags)

gb_swc connection create rsp[GE OP SUCCESS]

ab control coLnected(CF’ID)

gb control connected rsp[GB OP SUCCESS]

Though the AP may follow this sequence at any time, the AP should only do so if the Interface is ENU-
MERATED. If the AP follows this sequence at other times, the results are undefined.

A CPort ID value interface_cport_id shall be provided for a CPort on the Interface, and is used in this
sequence. The value shall have been given in the “id” field of a CPort Descriptor in the Interface Manifest
in the response payload of the Greybus Control Get Manifest Operation Operation which was exchanged
during the most recent enumeration of the Interface. The AP should additionally ensure that the CPort on
the Interface with CPort ID interface_cport_id is not already at one end of an established Greybus Connection.

Another value, ap_cport_id, shall also be provided. The AP Interface shall contain a CPort with CPort ID
ap_cport_id. The AP should ensure that this CPort is not part of an established UniPro connection.

The following values are used in this sub-sequence:
e The AP’s Interface ID is ap_interface_id.
e The Interface ID of the ENUMERATED Interface is interface_id.
1. The AP shall initiate a Greybus SVC Connection Create Operation to establish the Connection.

The intfl_id and cportl_id fields in the request payload shall respectively equal ap_interface_id and
ap_cport_id. The intf2_id and cport2_id fields in the request payload shall respectively equal interface_id
and interface_cport_id. The tc field in the request payload shall equal zero.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 255

The flags field in the request payload is Protocol -specific.
If this Operation fails, the sequence is complete and has failed. Go directly to step 4.

2. The AP shall initiate a Greybus Control Connected Operation request on the Interface’s Control Con-
nection. The cport_id field in the request payload shall equal interface_cport_id.

If this Operation fails, the sequence has failed.
If it succeeds, the sequence has succeeded. Go directly to step 4.

3. Since the sequence has failed, the AP initiates a Greybus SVC Connection Destroy Operation Operation
to disconnect the CPort which was connected in step 1.

The intfl_id, cportl_id, intf2_id, and cport2_id fields in the request payload shall respectively equal
ap_interface_id, ap_cport_id, interface_id, and interface_cport_id.

4. The sequence is now complete and has succeeded or failed.

If the sequence succeeds, the AP, and on a protocol-specific basis, the Interface, may initiate Greybus
Operations on the newly established Connection. In this case, the Greybus Protocol used shall correspond
to the “protocol” field for the CPort descriptor referenced in step 1, as defined by Table 6.10.

If the sequence fails, the AP should not, and the Interface shall not, initiate Greybus communication on any
of the CPorts referenced in step 1. If this occurs, the results are undefined.

Connection Closure Prologue

Note: The content in this section is defined under the following assumptions:
e there is exactly one AP Interface in the Greybus System.
e The Connection being closed is between that AP Interface and another Interface in the System.

The results if there are multiple AP Interfaces, or in the case of non-AP to non-AP Interfaces, are undefined.

This section defines a common sub-sequence, the connection closure prologue sub-sequence, which is used
by following sections in order to close a Greybus Connection.

AP SVC Control Connection Connection
| gb control disconnecting(CPID)

Guarantees AP will not send
any more non-CPort
Shutdown requests

gb control disconnecting rsp[GB OF SUCCESS]

--- No new non-CPort Shutdown requests on Closing CONNECHON - -x--rememmms b

gh protocol cport shutdown(1)

gb protocol cport shutdown rsp[GE OF SUCCESS]

To perform this sub-sequence, the following conditions shall hold.

e The AP Interface and SVC shall have established a Connection implementing the SVC Protocol. This
is the SVC Connection in this sub-sequence.

e A Connection between the AP Interface and another Interface shall be defined, which is now being
closed.

This is the Closing Connection here. The Closing Connection may be the Control Connection, or some
other Greybus Connection between the AP Interface and the other Interface.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 256

e The AP Interface and the other Interface shall have established a Control Connection. This is the
Control Connection in this sub-sequence.

If these conditions do not all hold, the sub-sequence shall not be followed. The results of following this
sub-sequence in this case are undefined.

The following values are used in this sub-sequence:
e The AP Interface ID is ap_interface_id.

e The CPort ID of the CPort on the AP Interface which is at one end of the Closing Connection is
ap_cport_id.

e The Interface ID of the other Interface is interface_id.

e The CPort ID on the other Interface which is at the other end of the Closing Connection is inter-
face_cport_id. If the Closing Connection is the Control Connection, interface_cport_id is zero.

1. The AP Interface shall exchange a Greybus Control Disconnecting Operation with the Interface on the
Control Connection. The cport_id field in the request payload shall equal interface_cport_id.

2. The AP Interface may now issue responses to requests it has already received on the Closing Connection.
It shall not issue any such responses after this step.

3. The AP shall exchange a Common Greybus Protocol CPort Shutdown Operation with the Interface on
the Closing Connection.

The connection closure prologue sub-sequence has succeeded.

Connection Closure Epilogue

Note: The content in this section is defined under the assumption that there is exactly one AP Interface
in the Greybus System.

The results if there are multiple AP Interfaces are undefined.

This section defines a common sub-sequence, the connection closure epilogue sub-sequence, which is used by
following sections in order to close a Greybus Connection.

AP SVC
gb swc connection destroy(AP 1IID, AP CFID, IID, CPID)

gb swc connection destroy rep[GE OF SUCCESS]

| ResetAP_CPID B‘

To perform this sub-sequence, the following conditions shall hold.

e The AP Interface and SVC shall have established a Connection implementing the SVC Protocol. This
is the SVC Connection in this sub-sequence.

e A Connection between the AP Interface and another Interface shall be provided. This is the Closing
Connection in this sub-sequence.

If these conditions do not all hold, the sub-sequence shall not be followed. The results of following this
sub-sequence in this case are undefined.

The following values are used in this sub-sequence:

e The AP Interface ID is ap_interface_id.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 257

e The CPort ID of the CPort on the AP Interface which is at one end of the Closing Connection is
ap_cport_id.

e The Interface ID of the other Interface is interface_id.

e The CPort ID on the other Interface which is at the other end of the Closing Connection is inter-
face_cport_id.

1. The AP Interface shall initiate a Greybus SVC Connection Destroy Operation on the SVC Connection.

The intfl_id and cportl._id fields in the request payload shall respectively equal ap_interface_id and
ap_cport_id. The intf2_id and cport2_id fields in the request payload shall respectively equal interface_id
and interface_cport_id.

If this Operation fails, the connection closure epilogue sub-sequence has failed. Go to the next step.

2. The AP Interface shall perform any implementation-defined procedures required to make the CPort
with ID ap_cport_id usable if a Greybus Connection is later reestablished on that CPort.

The AP Interface may set local UniPro attributes related to that CPort to implementation-defined
values as part of this process. If such procedures are required by the AP Interface, it shall complete
them before going to the next step.

If the connection closure epilogue sub-sequence did not fail in step 1, it has now succeeded.

3. The connection closure epilogue sub-sequence is now complete, and has succeeded or failed.

Non-Control Connection Closure

Note: The content in this section is defined under the following assumptions:
e there is exactly one AP Interface in the Greybus System.
e The Connection being closed is between that AP Interface and another Interface in the System.

The results if there are multiple AP Interfaces, or in the case of non-AP to non-AP Interfaces, are undefined.

If an Interface is ENUMERATED and a Non-Control Connection has been established between the AP and
the Interface as described in Non-Control Connection Establishment, the AP can subsequently close the
Connection to the Interface.

The following sequence may be used to close such a Connection to an Interface.

AP Control Connection

[: Connection Closure Prologue]

gb control disconnected(CPID)

ab control disconnected rsp[GE COP SUCCESS]

[: Connection Closure Epilogue]

Though the AP may follow this sequence at any time, the AP should only do so if the Interface whose
Connection is being closed is ENUMERATED, or during one of the following Interface Lifecycle state machine
transitions which cause the Interface to exit the ENUMERATED Lifecycle State:

e “power_down”, as described in Power Down (ENUMERATED — OFF)
e “suspend”, as described in Suspend (ENUMERATED — SUSPENDED)

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 258

e “ms_enter”, as described in Mode Switch Enter (ENUMERATED — MODE_SWITCHING)
If the AP follows this sequence at other times, the results are undefined.
The following values are used in this sub-sequence:

e The AP Interface ID is ap_interface_id.

e The CPort ID of the CPort on the AP Interface which is at one end of the Closing Connection is
ap_cport_id.

e The Interface ID of the other Interface is interface_id.

e The CPort ID on the other Interface which is at the other end of the Closing Connection is inter-
face_cport_id.

1. The Connection Closure Prologue sub-sequence is followed. The Closing Connection for that sub-
sequence is the one being closed in this sequence. If the sub-sequence fails, this sequence has failed.
Go directly to step 4.

2. The AP exchanges a Greybus Control Disconnected Operation on the Interface’s Control Connection.
The cport_id field in the request payload shall equal interface_cport_id.

3. The Connection Closure Epilogue sub-sequence is followed. The Closing Connection for that sub-
sequence is the one being closed in this sequence. If the sub-sequence fails, this sequence has failed.
Otherwise, it has succeeded.

4. The sequence is now complete, and has succeeded or failed.

If the sequence succeeds, the AP Interface and the other Interface shall respectively not transmit on CPorts
ap_cport_id and interface_cport_id unless a Greybus Connection is subsequently established using either of
the two CPorts. Any UniPro Messages received by those Interfaces shall be discarded.

Regardless of success or failure, the AP Interface shall not initiate any communication on the CPort unless
it is at one end of a Connection which is successfully established subsequently.

If the sequence fails, the results are undefined.

Control Connection Closure for ms_enter

Note: The content in this section is defined under the assumption that there is exactly one AP Interface
in the Greybus System.

The results if there are multiple AP Interfaces are undefined.

If an Interface is ENUMERATED, its Control Connection is established. The AP can subsequently close
the Control Connection to the Interface.

The following sequence may be used to close the Control Connection to an Interface while the Interface is
entering the MODE_SWITCHING state, and also to signal to the Interface that its Control Connection is
closing and it has entered MODE_SWITCHING.

AP SVC Control Connection

[: Connection Closure Prologue]

gb control nlode switch()

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 259

Though the AP may follow this sequence at any time, the AP should only do so if the Interface is ENU-
MERATED, during the “ms_enter” Interface Lifecycle state machine transition, which causes the Inter-
face to exit the ENUMERATED Lifecycle State as described in Mode Switch Enter (ENUMERATED —
MODE_SWITCHING).

If the AP follows this sequence at other times, the results are undefined.

1. The Connection Closure Prologue sub-sequence is followed. The Closing Connection for that sub-
sequence is the Control Connection for the Interface. If the sub-sequence fails, this sequence has failed.
Go directly to step 3.

2. The AP shall send a Greybus Control Mode Switch Operation to the Interface. The Operation is
unidirectional; this step succeeds. This sequence has succeeded.

3. The sequence is now complete and has succeeded or failed.

If the sequence fails, the results are undefined.

Control Connection Closure for Power Management

Note: The content in this section is defined under the following assumptions:
o there is exactly one AP Interface in the Greybus System.
e The Connection being closed is between that AP Interface and another Interface in the System.

The results if there are multiple AP Interfaces, or in the case of non-AP to non-AP Interfaces, are undefined.

If an Interface is ENUMERATED, its Control Connection is established. The AP can subsequently close
the Control Connection to the Interface.

The following sequence may be used to close the control Connection to an Interface while the Interface is
entering the either the SUSPENDED state or the OFF state.

AP SVC

[: Connection Closure Prologue]

[: Connection Closure Epilogue]

gb_svc_intf_set_powel mode(llD, UPRO HIBERNATE MODE,UF’PLO_HIBERNF\TE_MODE)

gb_svc_intf set power mode rsp[GB SWC OP SUCCESS] | UNIPRO = UPRO_HIBERNATE [31

Procedure

|
[: Interface Suspend or shutdown]

Though the AP may follow this sequence at any time, the AP should only do so if the Interface is ENUMER-
ATED, during either the “suspend” or “power_down” Interface Lifecycle state machine transitions, which
cause the Interface to exit the ENUMERATED Lifecycle State as described in Suspend (ENUMERATED
— SUSPENDED) and Power Down (ENUMERATED — OFF), respectively.

If the AP follows this sequence at other times, the results are undefined.
The following value is used in this sub-sequence:

e The Interface ID of the other Interface is interface_id.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 260

1. The Connection Closure Prologue sub-sequence is followed. The Closing Connection for that sub-
sequence is the Control Connection for the other Interface. If the sub-sequence fails, this sequence has
failed. If it has failed, go directly to step 5.

2. The Connection Closure Epilogue sub-sequence is followed. The Closing Connection for that sub-
sequence is the Control Connection for the other Interface. If the sub-sequence fails, this sequence has
failed. If it has failed, go directly to step 5.

3. The AP shall exchange a Greybus SVC Interface Set Power Mode Operation with the SVC.

The intf_id field in the request payload shall equal interface_id. The tx_mode and rx_mode fields shall
both equal UNIPRO_HIBERNATE_MODE.

If the Operation fails, this procedure has failed. Go directly to step 5.

If it succeeds, the SVC shall set the UNIPRO Interface State to UPRO_HIBERNATE. The SVC shall
wait an implementation-defined duration in this step to allow the Interface to power down or suspend
internally in the next step.

If the Operation succeeds, this procedure has succeeded.
4. The Interface shall be capable of receiving notification that UNIPRO became UPRO_HIBERNATE.

The Interface shall have previously been notified whether the change to UPRO_HIBERNATE denotes
suspend or power down as described below in Suspend (ENUMERATED — SUSPENDED).

If the Interface is suspending, it shall perform implementation-specific procedures to ensure it can be
resumed successfully if it remains SUSPENDED, then the procedure defined in Resume (SUSPENDED
— ENUMERATED) is subsequently followed.

Otherwise, the Interface may now perform implementation-defined procedures used during shutdown.

5. The sequence is now complete, and has succeeded or failed.

Boot and Enumeration
This section describes the procedures required to initialize an ATTACHED Interface, putting it in the
ACTIVATED Lifecycle State.

If an ACTIVATED Interface State’s INTF_-TYPE is IFT_GREYBUS, the Interface can be enumerated,
as outlined in ENUMFERATED. The enumeration procedure under these conditions is also defined in this
section.

Boot (ATTACHED — ACTIVATED)

Note: The content in this section is defined under the assumption that there is exactly one AP Interface
in the Greybus System.

The results if there are multiple AP Interfaces are undefined.

The following procedure can be initiated by the AP when an Interface is ATTACHED, in order to attempt
to follow the “boot” transition from ATTACHED to ACTIVATED.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 261

AP SVC

(ATTACHED)
agb sve intf v sys enable(liD)

gh sve intf v sys enable rsplV SYS OK] | V SYS=V SYS ON Il]
ab svc intf refclk enable(liD)

ab sve intf refclk enable rsp[REFCLK QK] | FEFCLK = REFCLK ON Il]
gb swc intf unipro enable(lID)

gbh sve intf unipro enable rsp[UPRO OK] | UNIPRO = UPRO UP b]

gb svc intf activate(iD)
ab sve intf activate rsplintf type] lF_ll_NUr:\”_"jrégE = [ﬂ?@%%“\?@ﬂ’y Ij
_ SOrIET_
(ACTIVATED)

To perform this procedure, the following conditions shall hold.

e The AP Interface and SVC shall have established a Connection implementing the SVC' Protocol. This

is the SVC Connection in this procedure.

e An Interface shall be provided, whose Interface Lifecycle State is ATTACHED. No other actions shall

have been taken to affect the Interface’s Lifecycle State or its corresponding Interface State since the
Interface became ATTACHED, except as defined in this procedure.

If these conditions do not all hold, the procedure shall not be followed. The results of following this procedure
in this case are undefined.

The following value is used in this procedure:

e The Interface ID of the Interface being activated is interface_id.

1.

The AP shall exchange an Greybus SVC Interface V_SYS Enable Operation with the SVC. The intf_id
field in the request payload shall equal interface_id.

If the Operation fails, this procedure has failed. Go to step 8.

. The AP shall exchange an Greybus SVC Interface REFCLK Enable Operation with the SVC. The

intf_id field in the request payload shall equal interface_id.
If the Operation fails, this procedure has failed. Go to step 7.

The AP shall exchange an Greybus SVC Interface UNIPRO Enable Operation with the SVC. The
intf_id field in the request payload shall equal interface_id.

If the Operation fails, this procedure has failed. Go to step 6.

The AP shall exchange an Greybus SVC Interface Activate Operation with the SVC. The intf.id field
in the request payload shall equal interface_id.

If the Operation fails, this procedure has failed. Go to step 5.

If the Operation succeeds, this procedure has succeeded. The Interface is now ACTIVATED. Go to
step 8.

The AP shall exchange a Greybus SVC' Interface UNIPRO Disable Operation with the SVC. The intf_id
field in the request payload shall equal interface_id.

The AP shall exchange a Greybus SVC Interface REFCLK Disable Operation with the SVC. The
intf_id field in the request payload shall equal interface_id.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 262

7. The AP shall exchange a Greybus SVC Interface V_SYS Disable Operation with the SVC. The intf_id
field in the request payload shall equal interface_id.

8. The procedure is complete and has succeeded or failed. If the procedure failed and all of the steps 5,
6, and 7 which were reached succeeded, the Interface is now ATTACHED.

Enumerate (ACTIVATED — ENUMERATED)

Note: The content in this section is defined under the assumption that there is exactly one AP Interface
in the Greybus System.

The results if there are multiple AP Interfaces are undefined.

The following procedure can be initiated by the AP when an Interface is ACTIVATED and its INTF_TYPE
is IFT_GREYBUS, in order to attempt to follow the “enumerate” transition from ACTIVATED to ENU-
MERATED.

AP SVC Control Connection

(ACTIVATED)

b svc intf device id{lID, DEVID)

gb_sv! intf device id rsp[GE OF SUCCESS]

gh_svc_route create(AP 11D, AP DEVID, IIIg, DEVID)

gh_svc route create rsp[GE OP SUCCESS]

[: Control Connection Establishment Sequence]

gh control get manifest size()

gh control get manifest size rsp[manifest size]

gh control get manifest)

gh control get manifest rsp[manifest]

(ENUMERATED)

To perform this procedure, the following conditions shall hold.

e The AP Interface and SVC shall have established a Connection implementing the SVC' Protocol. This
is the SVC Connection in this procedure.

e An Interface shall be provided, whose Interface Lifecycle State is ACTIVATED, and whose INTF_TYPE
is IFT_.GREYBUS. No other actions shall have been taken to affect the Interface’s Lifecycle State or
its corresponding Interface State since the Interface became ACTIVATED.

If these conditions do not all hold, the procedure shall not be followed. The results of following this procedure
in this case are undefined.

The following values are used in this procedure:
e The AP Interface Device ID is ap_device_id.
e The Interface ID of the Interface being enumerated is interface_id.

1. The AP shall initiate a Greybus SVC Interface Device ID Operation to assign a Device ID to the
Interface.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 263

The intf_id in the request payload shall equal interface_id.

The device_id field in the request payload shall be unique among all values assigned to Interfaces in
the Greybus System.

Additionally, the AP shall ensure that no other Interface shall currently have been assigned a Device
ID within the following inclusive range:

device_id, device_id + 1, ..., device_id + (max_conn / 32)

Where max_conn is the maximum value of the Interface’s CPort ID for any Connection the AP sub-
sequently intends to establish with the Interface, including the Control Connection, and “/” denotes
division with remainder truncated towards zero.

If this Operation fails, the sequence is complete and has failed. Go directly to step 9.

2. The AP shall initiate a Greybus SVC Route Create Operation to establish a route within the Switch
between an AP Interface and the Interface.

The intfl_id and devl_.id fields in the request payload shall respectively equal ap_interface_id and
ap_device_id. The intf2_id field in the request payload shall equal interface_id. The dev2_id field in the
request payload shall have the same value as the device_id field from step 1.

If this Operation fails, the sequence is complete and has failed. Go directly to step 9.

3. The sequence to establish a Control Connection to the Interface described in Control Connection
Establishment shall be followed.

If the sequence fails, this procedure has failed. Go to step 8.

4. The AP shall exchange a Greybus Control Get Manifest Size Operation via the Control Connection.
If the Operation is successful, the value of the manifest_size field in the response payload is inter-
face_manifest _size.

If the Operation fails, this procedure has failed. Go to step 7.

5. The AP shall exchange a Greybus Control Get Manifest Operation via the Control Connection. If the
Operation is successful, the Manifest’s value is interface_manifest.

If the Operation fails, this procedure has failed. Go to step 7.
6. The AP shall perform implementation-defined procedures to parse the components of the Manifest.
The Interface is now ENUMERATED. Go to step 9.

7. The AP shall attempt to close the Control Connection to the Interface as described in Control Con-
nection Closure for Power Management. Regardless of the Operation’s success or failure, go to the
next step.

8. The AP shall perform the procedure described in below in Early Power Down (ACTIVATED — OFF).
If the Early Power Down procedure succeeds, and step 7 succeeded if it was reached, the Interface is
OFF. Its Interface State’s INTF_TYPE is still IFT_GREYBUS, and its ORDER has not changed its
value since before this Enumerate procedure was followed.

9. The procedure is complete and has succeeded or failed.

If the Interface is now ENUMERATED, additional Connections to the Interface may be established using
the sequence defined in Non-Control Connection FEstablishment, and closed using the sequence defined in
Non-Control Connection Closure; if no errors occur, the Interface remains ENUMERATED.

Power Management

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 264

Suspend (ENUMERATED — SUSPENDED)

Note: The content in this section is defined under the following assumptions:
e there is exactly one AP Interface in the Greybus System.

e The Non-Control Connections given below are each between that AP Interface and another Interface
in the System.

The results if there are multiple AP Interfaces, or in the case of non-AP to non-AP Interfaces, are undefined.

The following procedure can be initiated by the AP when an Interface is ENUMERATED, in order to
attempt to follow the “suspend” transition from ENUMERATED to SUSPENDED.

AP SVC Control Connection

(ENUMERATED)

[: MNon-Control Closure Sequence]

gb control intf suspend prepare()
gb control intf suspend prepare rsp[INTF PM QK]
[: Control Closure for Suspend Sequence]
gb svc intf refclk disable(llD)

gb_svc intf refclk disable rsp[REFCLK._OK] | REFCLK = REFCLK OFF [31
(SUSPENDED)

To perform this procedure, the following conditions shall hold.

e The AP Interface and SVC shall have established a Connection implementing the SVC' Protocol. This
is the SVC Connection in this procedure.

e An Interface shall be provided, whose Interface Lifecycle State is ENUMERATED.

e Zero or more additional Non-Control Connections shall be provided, which comprise all such established
Connections involving the Interface, and shall each have been established by following the sequence
defined in Non-Control Connection Establishment.

e For every non-Control Connection: a set of zero or more Bundles shall be provided.

If these conditions do not all hold, the procedure shall not be followed. The results of following this procedure
in this case are undefined.

The following values are used in this procedure:
e The AP Interface’s ID is ap_interface_id.
e The Interface ID of the Interface being suspended is interface_id.

1. For every Bundle associated with the Interface being suspended which is in the BUNDLE_ACTIVE
state the AP shall:

(a) follow the Non-Control Connection Closure procedure for every CPort for which a Connection is
established. If the procedure fails for any CPort, the whole Interface Suspend procedure is failed,

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 265

(b) exchange a Greybus Control Bundle Suspend Operation with the Interface being suspended. If
any Request fails, the whole Interface Suspend is failed.

If any step above fails, the AP Interface should re-establish all Connections previously closed following
the Non-Control Connection Establishment procedure in order to return to the previous state.

2. The AP Interface shall exchange a Greybus Control Interface Suspend Prepare Operation with the
Interface being suspended. If the Operation fails (including the cases where the AP may retry sending
the Control Suspend Request as defined in the Operation description), this procedure has failed.

3. The sequence defined in Control Connection Closure for Power Management shall be followed to close
the Control Connection to the Interface.

If the sequence fails, this procedure has failed. The results are undefined.

4. The Interface shall be capable of receiving notification that UNIPRO became UPRO_HIBERNATE.
The Interface shall now enter an implementation-defined suspend state, during which it should attempt
to draw minimal power from the Frame.

5. The AP shall exchange an Greybus SVC Interface REFCLK Disable Operation with the SVC. The
intf_id field in the request payload shall equal interface_id.

If the Operation succeeds, this procedure has succeeded.
If the Operation fails, this procedure has failed. The results are undefined.

6. This procedure is now complete, and has either succeeded or failed. If it succeeded, the Interface is
now SUSPENDED.

Resume (SUSPENDED — ENUMERATED)

Note: The content in this section is defined under the following assumptions:
e there is exactly one AP Interface in the Greybus System.

e The Non-Control Connections given below were each between that AP Interface and another Interface
in the System.

The results if there are multiple AP Interfaces, or in the case of non-AP to non-AP Interfaces, are undefined.

The following procedure can be initiated by the AP when an Interface is SUSPENDED, in order to attempt
to follow the “resume” transition from SUSPENDED to ENUMERATED.

AP SVC
{ SUSPENDED)
ab svc intf refclk enable(liD)
ab svc intf refclk enable rsp[REFCLIK QK] | FEFCLK = REFCLK ON Il]
gb svc intf resume(ID)
gh svc intf resume replintf type] INTF_TYPE = <IFT UNIPROor
IFT_GREYBUS=
[: Control Connection Establishment Sequence]
{ ENUMERATED)

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 266

To perform this procedure, the following conditions shall hold.

The AP Interface and SVC shall have established a Connection implementing the SVC Protocol. This
is the SVC Connection in this procedure.

An Interface shall be provided, whose Interface Lifecycle State is SUSPENDED. The Interface shall
have transitioned to the SUSPENDED Lifecycle State by following the suspend procedure defined in
Suspend (ENUMERATED — SUSPENDED).

Zero or more additional Non-Control Connections shall be provided, which comprise all such established
Connections involving the Interface when the suspend procedure was followed.

A Device ID value shall be provided, which is the SUSPENDED Interface’s Device ID previously
assigned Device ID used to destroy any Routes to the Interface as defined in Suspend (ENUMERATED
— SUSPENDED).

A CPort ID value shall be provided, which was the AP CPort ID which was previously used for the
Interface Control Connection before the Interface was suspended.

If these conditions do not all hold, the procedure shall not be followed. The results of following this procedure
in this case are undefined.

The following values are used in this procedure:

The AP Interface’s ID is ap_interface_id.

The AP Interface Device ID is ap_device_id.

The Provided AP CPort ID used for the Interface Control Connection is ap_cport_id.
The Interface ID of the Interface being resumed is interface_id.

The provided Device ID of the Interface being resumed is interface_device_id.

. The AP shall exchange an Greybus SVC Interface REFCLK Enable Operation with the SVC. The

intf_id field in the request payload shall equal interface_id.
If the Operation fails, this procedure has failed. The results are undefined.

The AP shall exchange an Greybus SVC Interface Resume Operation with the SVC. The intf_id field
in the request payload shall equal interface_id.

If the Operation fails, this procedure has failed. The results are undefined.

The sequence to establish a Control Connection to the Interface described in Control Connection
Establishment shall be followed.

If the sequence fails, this procedure has failed. The results are undefined.

If it succeeds, the procedure has succeeded. The Interface is ENUMERATED. The requirements spec-
ified in Greybus SVC Interface Resume Operation guarantee that the Interface has the same Manifest
defined as that it made available to the AP Interface the most recent time it was ENUMERATED.

The procedure is complete and has succeeded or failed.

Power Down (ENUMERATED — OFF)

Note: The content in this section is defined under the following assumptions:

there is exactly one AP Interface in the Greybus System.

The Non-Control Connections given below are each between that AP Interface and another Interface
in the System.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 267

The results if there are multiple AP Interfaces, or in the case of non-AP to non-AP Interfaces, are undefined.

The following procedure can be initiated by the AP when an Interface is ENUMERATED, in order to
attempt to follow the “power_down” transition from ENUMERATED to OFF.

AP SVC Control Connection
(ENUMERATED)
[: MNon-Control Closure Sequence]
ab control intf deactivate prepare()
ab control intf deactivate prepare rsp[INTF PM O]
[: Control Closure for Power Down Sequence]
gh svc route destroy(AP IID,IIDl
gb_swc_route destroy rsp[GB OP SUCCESS]
ab sve intf unipro disable(liD)
gb_svc intf unipro disable rsp[UPRO OK] | UNIPEO = UPRC OFF Il]
ab sve intf refclk disable(liD)
gb_svc intf refclk disable rsp[REFCLK._OK] | FEFCLK = REFCLK OFF Il]
agb svc intf v sys disable(llD)
gb_svc intf v sys disable rsplV SYS OK] | V SYS =V SYS OFF Il]
{ OFF)

To perform this procedure, the following conditions shall hold.

e The AP Interface and SVC shall have established a Connection implementing the SVC' Protocol. This
is the SVC Connection in this procedure.

e An Interface shall be provided, whose Interface Lifecycle State is ENUMERATED.

e Zero or more additional Non-Control Connections shall be provided, which comprise all such established
Connections involving the Interface, and shall each have been established by following the sequence
defined in Non-Control Connection Establishment.

e For every non-Control Connection: a set of zero or more Bundles shall be provided.

If these conditions do not all hold, the procedure shall not be followed. The results of following this procedure
in this case are undefined.

The following values are used in this procedure:
e The AP Interface’s ID is ap_interface_id.
e The Interface ID of the Interface being powered off is interface_id.

1. For every Bundle associated with the Interface being powered off which is not in the BUNDLE_OFF
state:

(a) if the Bundle is in the BUNDLE_ACTIVE state, the AP shall follow the Non-Control Connection
Closure procedure for every CPort for which a Connection is established,

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 268

(b) if the Bundle is in the BUNDLE_SUSPENDED state, the AP exchange the Greybus Control
Bundle Resume Operation with the Bundle in order to bring it back to the BUNDLE_ACTIVE
state and then follow step a),

(¢) exchange a Greybus Control Bundle Deactivate Operation with the Interface being powered down,

If any step above fails, this step shall be considered failed, but the AP should still forcibly power down
the Interface by continuing from step 3.

2. The AP Interface shall exchange a Greybus Control Interface Deactivate Prepare Operation with the
Interface being powered down. If the Operation fails (including the cases where the AP may retry
sending the Greybus Control Interface Deactivate Prepare Operation as defined in the Operation
description), this procedure has failed.

3. The sequence defined in Control Connection Closure for Power Management shall be followed to close
the Control Connection to the Interface.

If the sequence fails, this procedure has failed. The results are undefined.

4. The AP shall exchange a Greybus SVC Route Destroy Operation with the SVC. The intfl_id and
intf2_id fields in the request payload shall respectively equal ap_interface_id and interface_id.

If the Operation fails, this procedure has failed. The results are undefined.

5. The AP shall exchange an Greybus SVC Interface UNIPRO Disable Operation with the SVC to disable
UNIPRO within the Switch.

If the Operation fails, this procedure has failed. The results are undefined.

6. The AP shall exchange an Greybus SVC Interface REFCLK Disable Operation with the SVC. The
intf_id field in the request payload shall equal interface_id.

If the Operation succeeds, this procedure has succeeded.
If the Operation fails, this procedure has failed. The results are undefined.

7. The AP shall exchange an Greybus SVC Interface V_SYS Disable Operation with the SVC. The intf_id
field in the request payload shall equal interface_id.

If the Operation succeeds, this procedure has succeeded.
If the Operation fails, this procedure has failed. The results are undefined.

8. This procedure is now complete, and has either succeeded or failed. If it succeeded, the Interface is
now OFF.

Reboot (OFF — ACTIVATED)

Note: The content in this section is defined under the assumption that there is exactly one AP Interface
in the Greybus System.

The results if there are multiple AP Interfaces are undefined.

The following procedure can be initiated by the AP when an Interface is OFF, in order to attempt to follow
the “reboot” transition from OFF to ACTIVATED.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 269

AP SVC

{ OFF)

agb sve intf v sys enable(liD)

gh sve intf v sys enable rsplV SYS OK] | V SYS=V SYS ON Il]
ab svc intf refclk enable(liD)

ab sve intf refclk enable rsp[REFCLK QK] | FEFCLK = REFCLK ON Il]
gb swc intf unipro enable(lID)

gbh sve intf unipro enable rsp[UPRO OK] UNIF’ROG;'%IERL?PEOWN or B

gb svc intf activate(iD)
ab sve intf activate rsplintf type] lF_ll_NUr:\”_"jrégE = [ﬂ?@%%“\?@ﬂ’y B
_ SOrIET_
(ACTIVATED)

To perform this procedure, the following conditions shall hold.

e The AP Interface and SVC shall have established a Connection implementing the SVC' Protocol. This

is the SVC Connection in this procedure.

e An Interface shall be provided, whose Interface Lifecycle State is OFF.

If these conditions do not all hold, the procedure shall not be followed. The results of following this procedure
in this case are undefined.

Other than the initial state which led to the transition, this procedure is otherwise identical to that defined
in Boot (ATTACHED — ACTIVATED).

The following value is used in this procedure:

e The Interface ID of the Interface being rebooted is interface_id.

1.

The AP shall exchange an Greybus SVC Interface V_SYS Enable Operation with the SVC. The intf_id
field in the request payload shall equal interface_id.

If the Operation fails, this procedure has failed. Go to step 8.

The AP shall exchange an Greybus SVC Interface REFCLK Enable Operation with the SVC. The
intf_id field in the request payload shall equal interface_id.

If the Operation fails, this procedure has failed. Go to step 7.

The AP shall exchange an Greybus SVC Interface UNIPRO Enable Operation with the SVC. The
intf_id field in the request payload shall equal interface_id.

If the Operation fails, this procedure has failed. Go to step 6.

The AP shall exchange an Greybus SVC Interface Activate Operation with the SVC. The intf_id field
in the request payload shall equal interface_id.

If the Operation fails, this procedure has failed. Go to step 5.

If the Operation succeeds, this procedure has succeeded. The Interface is now ACTIVATED. Go to
step 8.

The AP shall exchange a Greybus SVC' Interface UNIPRO Disable Operation with the SVC. The intf_id
field in the request payload shall equal interface_id.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 270

6. The AP shall exchange a Greybus SVC Interface REFCLK Disable Operation with the SVC. The
intf_id field in the request payload shall equal interface_id.

7. The AP shall exchange a Greybus SVC Interface V_SYS Disable Operation with the SVC. The intf_id
field in the request payload shall equal interface_id.

8. The procedure is complete and has succeeded or failed. If the procedure failed and all of the steps 5,
6, and 7 which were reached succeeded, the Interface is now OFF.

Eject (OFF — DETACHED)

Note: The content in this section is defined under the assumption that there is exactly one AP Interface
in the Greybus System.

The results if there are multiple AP Interfaces are undefined.

The following procedure can be initiated by the AP when an Interface is OFF, in order to attempt to follow
the “eject” transition from OFF to DETACHED.

AP SVC

{ OFF)

gb svc module eject(PRIMARY [1D)

gh svc module eject rsp[GB OPF SUCCESS]

--—----— Implementation-dependent eject time ----—----—

gb svc module removed(PRIMARY 11D)

gh_swvc module removed rsp[GEB OP SUCCESS]

(DETACHED)

To perform this procedure, the following conditions shall hold.

e The AP Interface and SVC shall have established a Connection implementing the SVC' Protocol. This
is the SVC Connection in this procedure.

e A Module shall be provided which is MODULE_ATTACHED.
e The Interface Lifecycle State is OFF for all Interfaces in the Module.

If these conditions do not all hold, the procedure shall not be followed. The results of following this procedure
in this case are undefined.

The following value is used in this procedure:
e The Interface ID of the Primary Interface to the Module being ejected is primary_interface_id.

1. If the AP receives an Greybus SVC Module Removed Operation Request from the SVC with pri-
mary_intf_id field equal to primary_interface_id, the procedure has succeeded. Immediately go to to
step 4.

2. The AP shall exchange an Greybus SVC Module Eject Operation with the SVC. The primary_intf_id
field in the request payload shall equal primary_interface_id.

If this Operation fails, the procedure has failed. Go to step 4.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 271

3. After the SVC Interface Eject Response is received, the AP shall start a timer, for an implementation-
defined duration.

If the AP detects the timer has expired and has not received an SVC Module Removed Request from
the SVC with primary_intf id field equal to primary_interface_id, the procedure has failed. Go to the
next step.

4. The procedure is now complete and has succeeded or failed. If the procedure succeeded, all Interfaces
formerly present in the removed Module are now DETACHED. If the procedure failed, the Interfaces
are all still OFF, and the Module is still MODULE_ATTACHED, and the Interfaces are all still OFF.

Mode Switching

Mode Switch Enter (ENUMERATED — MODE_SWITCHING)

Note: The content in this section is defined under the following assumptions:
e there is exactly one AP Interface in the Greybus System.

e The Non-Control Connections given below are each between that AP Interface and another Interface
in the System.

The results if there are multiple AP Interfaces, or in the case of non-AP to non-AP Interfaces, are undefined.

The following procedure can be initiated by the AP when an Interface is ENUMERATED, in order to
attempt to follow the “ms_enter” transition from ENUMERATED to MODE_SWITCHING.

AP SVC Control Connection
{ ENUMERATED)
[: MNon-Control Connection Closure Sequence]
[: Control Connection Closure for ms_enter Sequence]

(MODE_SWITCHING)

To perform this procedure, the following conditions shall hold.

e The AP Interface and SVC shall have established a Connection implementing the SVC Protocol. This
is the SVC Connection in this procedure.

e An Interface shall be provided, whose Interface Lifecycle State is ENUMERATED.

e Zero or more additional Non-Control Connections shall be provided, which comprise all such established
Connections involving the Interface, and shall each have been established by following the sequence
defined in Non-Control Connection Establishment.

If these conditions do not all hold, the procedure shall not be followed. The results of following this procedure
in this case are undefined.

The following values are used in this procedure:
e The AP Interface’s ID is ap_interface_id.
e The Interface ID of the Interface entering MODE_SWITCHING is interface_id.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 272

1. Through Protocol-specific means, the AP and Interface shall establish that the remaining steps in the
Mode Switch Enter procedure shall be followed.

2. The sequence defined in Non-Control Connection Closure shall be followed to attempt to close all of
the provided Non-Control Connections.

If any attempt fails, this procedure has failed. The results are undefined.

3. The sequence defined in Control Connection Closure for ms_enter shall be followed to inform the
Interface its Control Connection is closing and it is entering MODE_SWITCHING.

If the sequence succeeds, this procedure has succeeded. The Interface is MODE_SWITCHING.
If the sequence fails, this procedure has failed. The results are undefined.

4. The procedure is now complete and has either succeeded or failed.

Mode Switch Exit (MODE_SWITCHING — ENUMERATED)

Note: The content in this section is defined under the following assumptions:
e there is exactly one AP Interface in the Greybus System.

e The Non-Control Connections given below were each between that AP Interface and another Interface
in the System.

The results if there are multiple AP Interfaces, or in the case of non-AP to non-AP Interfaces, are undefined.

The following procedure can be initiated by the Interface when it is is MODE_SWITCHING, in order to
attempt to follow the “ms_exit” transition from MODE_SWITCHING to ENUMERATED.

AP SVC Control Connection Interface

(MODE_SWITCHING)

tsh unipro mbox sendMAILBOX GREYBUS)

svc_mailbox_poke(TSB MAIL RESET) MN[”'E’;‘”‘C')'-E%XREYB_T
Us

gh_svc_intf_mailbox event(lID, SUCCESS, MAILBOX_GREYBUS)

gb_svc_intf_rJ;;tilbox event rsp[MBOX ENT_SUCCESS]

[: Connection Closure Epilogue]

[: Control Connection Establishment Sequence]

agb control get manifest size()

gb control get manifest size rspmanifest size]

gb control get manifest()

gb control get manifest rsp[manifest]

(ENUMERATED)

To perform this procedure, the following condition shall hold.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 273

e An Interface shall be provided, whose Interface Lifecycle State is MODE_SWITCHING. The Interface

shall have transitioned to the MODE_SWITCHING Lifecycle State by following the ms_enter procedure
defined in Mode Switch Enter (ENUMERATED — MODE_SWITCHING).

e Another value, ap_cport_id, shall also be provided. The AP Interface shall contain a CPort with CPort

ID ap_cport_id. This CPort on the AP Interface shall not be part of an established UniPro connection.

If these conditions do not all hold, the procedure shall not be followed. The results of following this procedure
in this case are undefined.

The following values are used in this procedure:

e The AP Interface ID is ap_interface_id.
e The Interface ID of the Interface which is MODE_SWITCHING is interface_id.

1.

The Interface shall conclude any implementation-specific procedures needed while it is in the
MODE_SWITCHING Lifecycle State, and write MAILBOX as described in Greybus Control Mode
Switch Operation.

. The SVC shall detect this write, and exchange an Greybus SVC Interface Mailbox Event Operation

Operation with the AP. The intf_id field in the request payload shall equal interface_id.
If the Operation is not successful, this procedure has failed. The results are undefined.

The Connection Closure Epilogue sub-sequence is followed. The Closing Connection for that sub-
sequence is the Control Connection to the Module which was MODE_SWITCHING.

If the sub-sequence succeeds, the Control Connection to the Interface is now closed.

If the sub-sequence fails, this procedure has failed. The results are undefined.

. The sequence to establish a Control Connection to the Interface described in Control Connection

Establishment shall be followed.
If the sequence fails, this procedure has failed. The results are undefined.

The AP shall exchange a Greybus Control Get Manifest Size Operation via the Control Connection.
If the Operation is successful, the value of the manifest_size field in the response payload is inter-
face_manifest _size.

If the Operation fails, this procedure has failed. The results are undefined.

The AP shall exchange a Greybus Control Get Manifest Operation via the Control Connection. If the
Operation is successful, the Manifest’s value is interface_manifest.

If the Operation fails, this procedure has failed. The results are undefined.
The AP shall perform implementation-defined procedures to parse the components of the Manifest.

The procedure is now complete. The Interface is ENUMERATED once more.

No special provision is made within the Greybus Specification for recovery from failure. The AP and Interface
may use implementation- or protocol-specific timeouts to detect errors and attempt to recover.

Error Handling

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 274

Early Eject (ATTACHED — DETACHED)

AP SVC

{ ATTACHED)
gb svc module eject(PRIMARY 11D)
db svc module eject rsp[GB OF SUCCESS]
--—----— |mplementation-dependent gject time -----------
gb svc module removed(PRIMARY 11D)

gh_svc_module removed rsp[GB OP SUCCESS]

(DETACHED)

Early Power Down (ACTIVATED — OFF)

Make sure cleanup when jumping from failure to enumerate is covered:
e tear down routes
e destroy Device ID

e unipro, refclk, vsys from activation -> off

Mode Switch Fail (MODE_SWITCHING — ACTIVATED)

Forcible Removal (Any — DETACHED)

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 275

Appendix A

Firmware Lifecycle on ARA Phone
Module (Informative)

This appendix describes the Firmware Lifecycle on an ARA Phone Module’s Interface, that includes a bridge
ASIC to communicate to the UniPro network. The term ‘Interface’ will be used by rest of this section for
such an ARA Phone Module’s Interface.

Firmware Types and Protocols

Firmware images required for an Interface can be classified broadly into two categories:
e Interface Firmware
These are the Firmware Images that run on the bridge ASIC present on the ARA Phone Module.
e [Interface Backend Firmware

These are the Firmware Images that run on a Device Processor sitting behind the bridge ASIC, for
example Camera.

The term Mode-Switch will be used by rest of this section, for referring to transition from one Interface
Firmware Image to another Interface Firmware Image for an Interface using the Greybus Control Mode
Switch Operation.

The Firmware Download Protocol can be used by an Interface to download Firmware Packages over UniPro.

The Firmware Management Protocol can be used by the Application Processor (AP) to prepare the Interface
State to enter MODE_SWITCHING Interface Lifecycle State. The Firmware Management Protocol can also
be used by the AP to update the Interface Backend Firmware Images for an Interface.

Ideally, every Interface Firmware Stage for the Interface shall contain a CPort for Firmware Management
Protocol. Without that, the firmware wouldn’t be able to load another firmware and boot into it.

ARA Boot Stages

The current design of Interface Firmware stages for an Interface on ARA Phone forces the Interface to have
three or four stages as defined by Table A.1.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 276

Boot Stage Name Firmware Tag
boot ROM (S1) Not Applicable
Stage 2 Loader “s21”

Stage 3 Firmware “s3f”

Stage 3 Backend Firmware Updater “s3_bfu”

Table A.1: ARA Boot Stages and Firmware-tag

One of the main purpose of the S2 Loader stage is to get the Interface hardware Authenticated. For security
reasons, the AP may want to verify if a connected Module is authorized by Google to be part of the ARA
phone. The AP and the Interface takes part in the Authentication dialog using the Component Authenti-
cation Protocol (CAP). The AP sends a CAP Message to the Interface which contains a cryptographically
unpredictable message. The Interface decodes the same using a set of private keys burned into the Interface
at the time of Manufacturing. Only an Authorized Interface Firmware can read these keys and get the
Module authenticated.

Todo
Add Component Authentication Protocol (CAP) to Greybus Specifications.

The Backend Device Processors can only be made functional while the current Interface Firmware stage is
S3F or S3-BFU, as the S2 Loader doesn’t have any knowledge of the Backed Device Processors and it can’t
talk to them.

The Interface Firmware stages shall have the capability to Mode-Switch from:

e boot ROM to Stage 2 Loader (For future boot-ROMs only, boot ROM of ES3 chips is fixed as the chip
is already taped out).

Stage 2 Loader to another Stage 2 Loader Firmware Image (If S2L is updated).

Stage 2 Loader to Stage 3 Interface Firmware.

Stage 3 Interface Firmware to Stage 3 Backend Firmware Updater.

Stage 3 Backend Firmware Updater to Stage 3 Interface Firmware.

Interface Manifest Layout

This section describes how the Interface Manifest received by the AP from an Interface over Control Protocol
shall look like, in order to support Mode-Switch and updates to Interface Backend Firmware Packages.

The Manifest may contain other Bundles and CPorts as well, like Control CPort, etc..
Firmware Management Bundle (Bundle 1):
e class = 0x16
e (Mandatory) Firmware Management Protocol on CPort 1 talks over Firmware Management Protocol.
— protocol = 0x18
e (Optional) Firmware Download Protocol on CPort 2 talks over Firmware Download Protocol.
— protocol = 0x17
e (Optional) SPI Protocol on CPort 3 talks over SPI Protocol.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 277

— protocol = 0x0b

e (Optional) Component Authentication Protocol (CAP) on CPort 4 talks over CAP Protocol Component
Authentication Protocol.

— protocol = 0x19

Identify Current Interface Firmware Stage

Android userspace or the kernel running on the AP may be required to do different things based on the
current Firmware Stage of an Interface. For example, in S2L stage, the AP may Authenticate the Interface
using CAP Protocol or update bridge ASIC’s SPI flash using SPI Protocol, etc..

And so can be quite useful for the AP to know the current implementation defined Interface Firmware Stage.

This can be retrieved by the AP from the Interface using Greybus Firmware Management Interface Firmware
Version Operation. The Interface shall return an implementation defined “firmware_tag” to the AP, which
can be used by the AP to know the current boot stage. For example, in the current implementation we can
keep its values as “s21”, “s3f”, “s3_bfu”.

Prepare an Interface Firmware to enter MODE_SWITCHING Lifecycle
State

The AP may want to Mode Switch to another Interface Firmware Stage. For that it first needs to ask the
Interface to load and validate the next stage Firmware package. Following sequence of events describes how
that can be achieved to Mode-Switch from S2L to S3F Interface Firmware stage, by first downloading the
Firmware Package over UniPro.

e The AP initiates a Greybus Firmware Management Interface Firmware Load and Validate Operation
over Firmware Management CPort and passes request-id as ‘1’, firmware-tag as “s3f”, and load-method
as FIRMWARE_LOAD_METHOD _UNIPRO.

e The Interface responds to the request from the AP immediately and initiates a Greybus Firmware
Download Find Firmware Operation request over Firmware Download CPort and passes it the firmware-
tag received from the AP in Load and Validate Operation.

e The AP finds the requested firmware package and responds with GB_OP_SUCCESS in the status of
the response header and provides firmware size as 16380 bytes and unique firmware-ID as 0x05.

e The Interface initiates a number of Fetch Firmware Operations using firmware-ID 0x05 and loads the
entire firmware package block by block.

e The Interface initiates a Greybus Firmware Download Release Firmware Operation using firmware-1D
0x05 to request the AP to release the firmware.

e The Interface parses the firmware image header and validates its signature in an implementation defined
way.

e The Interface initiates a Greybus Firmware Management Interface Firmware Loaded Operation to the
AP and passes the request-id as ‘1’ (same as that received from the AP), status of validation and
major/minor version of the loaded firmware.

e The AP finds that the Interface has verified the signatures of the Interface Firmware Package.
e The Interface has an Interface Firmware Package with now and needs to Mode Switch into that.

e The AP starts tearing down of the connections and issue a Greybus Control Mode Switch Operation.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 278

Update S2L and S3F in bridge ASIC’s SPI Flash

Lets consider that the Interface is running its S3F stage currently. Following sequence of events will lead to
updating Images in the bridge ASIC SPI flash.

Android receives a MSP update for the Interface and downloads it from Android Play-store (or what-
ever).

AP receives the current Interface Firmware version using Greybus Firmware Management Interface
Firmware Version Operation.

AP compares that to the version of the firmware it has downloaded and decides if an update is required
or not.

If an update is required, the AP prepares the Interface to Mode Switch into S2L Firmware Stage as
described in the Prepare an Interface Firmware to enter MODE_SWITCHING Lifecycle State section.

Once the AP has Mode-Switched to S2L Firmware Stage, the AP will get an additional SPI CPort and
the AP can update the SPI flash using SPI Protocol.

If the S2 Loader firmware is also updated, and then we may need to Mode-Switch to the new S2L
Firmware Image first, which will eventually Mode-Switch into the S3F. Otherwise, we can directly
Mode-Switch from old S2L to the S3F Image. All Mode-Switch operations can be done as defined in
Prepare an Interface Firmware to enter MODE_SWITCHING Lifecycle State section.

Update Device Processor Firmware Images

This is perhaps the most complicated of all the use cases we may have.

Consider that the bridge ASIC is running its S3F Interface Firmware Stage and the device processors are
running their respective firmware images.

Following sequence of events will lead to updating device firmware images.

The AP receives the version of the individual Device Processor Firmware Images using Greybus
Firmware Management Interface Backend Firmware Version Operation over the Firmware Manage-
ment CPort.

If the AP finds at least one Device Processor firmware image that needs update, it Mode-Switches the
Interface to S3-BFU Interface Firmware Stage as described in Prepare an Interface Firmware to enter
MODE_SWITCHING Lifecycle State section.

This is important to guarantee that the Interface and its device processors aren’t being used by the
AP concurrently while the update in progress.

During the above Mode Switch, the Device Processors aren’t required to be reseted as power to them
is never cut-off on Mode Switch, but this is going to be implementation defined really.

The new Interface personality provided by the S3-BFU will only contain the CPorts necessary for
firmware update, i.e. Firmware Management CPort and Firmware Download CPort.

Once the S3-BFU Interface Firmware Stage has booted, the AP (again) starts again matching versions
of all the backend device processor firmwares using Greybus Firmware Management Interface Backend
Firmware Version Operation over the Firmware Management CPort, as it may not have cached them
earlier.

As soon as a mismatch in version is found between the backend firmware on the Interface and the
version available with the AP, the AP starts updating them by issuing Greybus Firmware Management
Interface Backend Firmware Update Operation requests over the Firmware Management CPort.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 279

e On receiving these requests, S3-BFU Interface Firmware Stage will immediately respond to the AP and
start downloading the specific backend device processor firmware using Firmware Download Protocol
as explained earlier.

e Once the individual device processor firmware is downloaded by the bridge ASIC, it will flash that
to the internal flash memory in an implementation dependent way and send a Greybus Firmware
Management Interface Backend Firmware Updated Operation.

e Similarly all the device processor firmware images, that the AP wants to update or reflash, can be
updated.

e Now the AP needs to Mode-Switch the Interface to normal S3F Interface Firmware Stage personality
as described in Prepare an Interface Firmware to enter MODE_SWITCHING Lifecycle State section.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 280

Copyright (©) 2014-2016 Google Inc. All rights reserved.

Greybus Specification 1.0 281

Bibliography

[HIDO1] Device Class Definition for Human Interface Devices (HID), Version 1.11, USB Implementers’ Fo-
rum, 27 June 2001.

[MIPIO1] Specification for UniPro, version 1.6, MIPI Alliance Inc., 6 August 2013.
[MIPI02] Specification for M-PHY, version 3.0, MIPI Alliance, Inc., 26 July, 2013.
[US-ASCII] ANSI_X3.4-1968 encoding standard.

[

JEDEC-UFS| JESD220B, Universal Flash Storage (UFS), JEDEC Solid State Technology Association,
September 2013.

[CSI-2] MIPI Alliance Specification for CSI-2, version 1.3, MIPI Alliance, Inc., 29 May 2014.
[CSI-3] MIPI Alliance Specification for CSI-3, version 1.1, MIPI Alliance, Inc., 2012.

[FIPS180] FIPS PUB 180-4, Secure Hash Standard, National Institute of Standards and Technology, August
2015

[RSA] Internet RFC 3447, Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifica-
tions Version 2.1 https://tools.ietf.org/html/rfc3447

[ED25519] Internet RFC 7748, Elliptic Curves for Security, section 4.1, https://tools.ietf.org/html/rfc7748
[ED448] Internet RFC 7748, Elliptic Curves for Security, section 4.2, https://tools.ietf.org/html/rfc7748

[IEEE745] IEEE Standard for Floating-Point Arithmetic,” in IEEE Std 754-2008 , vol., no., pp.1-70, Aug.
29 2008.

Copyright (©) 2014-2016 Google Inc. All rights reserved.

https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc7748

	Glossary
	Contributors
	Legal Stuff
	Copyright
	License
	Additional IP Rights Grant (Patents)

	Introduction (Informative)
	Greybus Hardware Model
	Overview
	Interface States
	Initial Interface States
	Interfaces
	Interface Lifecycle States
	Bundle Power States
	Special AP Module Requirements

	Interface Information
	Manifest
	Greybus Interface Attributes

	Greybus Operations
	Message Data Requirements
	Operation Messages
	Greybus Operation Status

	Connection Protocols
	Protocol Versions
	Common Greybus Protocol Version Operation
	Common Greybus Protocol CPort Shutdown Operation
	Connection Transmission Restrictions

	Special Protocols
	Control Protocol
	SVC Protocol
	Bootrom Protocol

	Device Class Connection Protocols
	Audio Protocol
	Camera Protocol
	Component Authentication Protocol
	Firmware Download Protocol
	Firmware Management Protocol
	HID Protocol
	Lights Protocol
	Log Protocol
	Loopback Protocol
	Power Supply Protocol
	Raw Protocol
	Vibrator Protocol

	Bridged PHY Connection Protocols
	USB Protocol
	GPIO Protocol
	SPI Protocol
	UART Protocol
	PWM Protocol
	I2C Protocol
	SDIO Protocol

	Module and Interface Lifecycles
	The Module Lifecycle
	The Interface Lifecycle

	Firmware Lifecycle on ARA Phone Module (Informative)
	Firmware Types and Protocols
	ARA Boot Stages
	Interface Manifest Layout
	Identify Current Interface Firmware Stage
	Prepare an Interface Firmware to enter MODE_SWITCHING Lifecycle State
	Update S2L and S3F in bridge ASIC's SPI Flash
	Update Device Processor Firmware Images

	Bibliography

